Skip to main content
Log in

Elite Opposition-Based Bare Bones Mayfly Algorithm for Optimization Wireless Sensor Networks Coverage Problem

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Wireless sensor networks (WSNs) are composed of sensor nodes with sensing, computing and wireless communication abilities. All sensor nodes have the task of monitoring environmental conditions, collecting and transmitting data. In the field of WSNs, maximizing the coverage of the target region is a key optimization problem. Mayfly algorithm (MA) is a metaheuristic algorithm, which has been successfully implemented to solve various practical issues. This paper presents an elite opposition-based bare bones mayfly algorithm (EOBBMA), which introduces Gaussian distribution and Lévy flight, ameliorates the shortage of too many initial parameters of MA, and introduces an elite opposition-based learning (EOBL) strategy to enhance the exploration ability of the algorithm. Finally, we use EOBBMA to relocate the mobile sensors after the initial deployment, aiming at maximizing the coverage area, minimizing the redundant area and minimizing the moving distance. EOBBMA and seven other algorithms are tested in eight scales. The experimental results reveal that the coverage rate of the sensor deployment scheme obtained by EOBBMA is more than 85%, and the highest coverage is 99.6%. Considering all aspects of performance, compared with other algorithms, EOBBMA has significant superiority for WSNs coverage problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The original contributions presented in the study are included in the article, further inquiries can be directed to the corresponding authors.

References

  1. Shafique, K.; Khawaja, B.A.; Sabir, F.; Qazi, S., et al.: Internet of things (IoT) fornext-generation smart systems: a review of current challenges, future trends and prospects for emerging 5G-IoT scenarios. IEEE Access 8, 23022–23040 (2020)

    Article  Google Scholar 

  2. Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E.: Wireless sensor networks: a survey. Comput. Netw.. Netw. 38(4), 393–422 (2002)

    Article  Google Scholar 

  3. Ghosh, K.; Neogy, S.; Das, P.K.; Mehta, M.: Intrusion detection at international borders and large military barracks with multi-sink wireless sensor networks: an energy efficient solution. Wirel. Pers. Commun.. Pers. Commun. 98, 1083–1101 (2018)

    Article  Google Scholar 

  4. Alemdar, H.; Ersoy, C.: Wireless sensor networks for healthcare: a survey. Comput. Netw.. Netw. 54(15), 2688–2710 (2010)

    Article  Google Scholar 

  5. Burns, A.; Greene, B.R.; Mcgrath, M.J.; O’Shea, T.J.: SHIMMERTM—A wireless sensor platform for noninvasive biomedical research. IEEE Sens. J. 10(9), 1527–1534 (2010)

    Article  Google Scholar 

  6. Hodge, V.J.; O’Keefe, S.; Weeks, M.; molds, A.: Wireless sensor networks for condition monitoring in the railway industry: a survey. IEEE transactions on the railway industry: a survey. IEEE Trans. Intell. Transp. Syst.Intell. Transp. Syst. 16(3), 1088–1106 (2015)

    Article  Google Scholar 

  7. Lanzolla, A.; Spadavecchia, M.: Wireless sensor networks for environmental monitoring. Sensors 21, 1172 (2021)

    Article  Google Scholar 

  8. Singh, A.; Sharma, S.; Singh, J.: Nature-inspired algorithms for wireless sensor networks: a comprehensive survey. Comput Sci Rev 39, 100342 (2021)

    Article  MathSciNet  Google Scholar 

  9. Wang, W.; Huang, H.; He, F.; Jiang, X., et al.: An enhanced virtual force algorithm for diverse k-coverage deployment of 3D underwater wireless sensor networks. Sensors 19(16), 3496 (2019)

    Article  Google Scholar 

  10. Wang, G.; Cao, G.; LA Porta, T.F.: Movement-assisted sensor deployment. IEEE Trans. Mob. Comput.Comput. 5(06), 640–652 (2006)

    Article  Google Scholar 

  11. Al-Mousawi, A.J.: Evolutionary intelligence in wireless sensor network: routing, clustering, localization and coverage. Wirel. Netw. 26(8), 5595–5621 (2020)

    Article  Google Scholar 

  12. Tsai, C.-W.; Tsai, P.-W.; Pan, J.-S.; Chao, H.-C.: Metaheuristics for the deployment problem of WSN: a review. Microprocess. Microsyst.. Microsyst. 39(8), 1305–1317 (2015)

    Article  Google Scholar 

  13. Moh’d Alia, O.; Al-Ajouri, A.: Maximizing wireless sensor network coverage with minimum cost using harmony search algorithm. IEEE Sens. J. 17(3), 882–896 (2016)

    Article  Google Scholar 

  14. Zain Eldin, H.; Badawy, M.; Elhosseini, M.; Arafat, H., et al.: An improved dynamic deployment technique based-on genetic algorithm (IDDT-GA) for maximizing coverage in wireless sensor networks. J. Ambient Intell. Hum. Comput. 11, 4177–4194 (2020)

    Article  Google Scholar 

  15. Abo-Zahhad, M.; Ahmed, S.M.; Sabor, N.; Sasaki, S.: Coverage maximization in mobile wireless sensor networks utilizing immune node deployment algorithm. In: Electrical and Computer Engineering (CCECE), 2014 IEEE 27th Canadian Conference on IEEE, pp 1–6.

  16. Tuba, E.; Tuba, M.; Beko, M.: Mobile wireless sensor networks coverage maximization by firefly algorithm. In: Radioelektronika (RADIOELEKTRONIKA), 27th International Conference, pp. 1–5 (2017)

  17. Hanh, N.T.; Binh, H.T.T.; Hoai, N.X.; Palaniswami, M.S.: An efficient genetic algorithm for maximizing area coverage in wireless sensor networks. Inf. Sci. 488, 58–75 (2019)

    Article  MathSciNet  Google Scholar 

  18. Yao, Y.; Shanshan, Hu.; Li, Y.; Wen, Q.: A node deployment optimization algorithm of WSNs based on improved moth flame search. IEEE Sens. J. 22(10), 10018–10030 (2022)

    Article  Google Scholar 

  19. Céspedes-Mota, A.; Castañón, G.; Martínez-Herrera, A.F.; Cárdenas-Barrón, L.E. et al.: Differential evolution algorithm applied to wireless sensor distribution on different geometric shapes with area and energy optimization. J. Netw. Comput. Appl. 14–23

  20. Sengupta, S.; Das, S.; Nasir, M.D.; Panigrahi, B.K.: Multi-objective node deployment in WSNs: in search of an optimal trade-off among coverage, lifetime, energy consumption, and connectivity. Eng. Appl. Artif. Intell.Artif. Intell. 26(1), 405–416 (2013)

    Article  Google Scholar 

  21. Wei, Y.; Zhou, Y.; Luo, Q.; Bi, J.: Using simplified slime mold algorithm for wireless sensor network coverage problem. Intell. Comput. Theories Appl. 186–200 (2021)

  22. Ab Aziz, N.A.B.; Mohemmed, A.W.; Alias, M.Y.: A wireless sensor network coverage optimization algorithm based on particle swarm optimization and voronoi diagram. In: 2009 International Conference on Networking, Sensing and Control, pp. 602–607. IEEE (2009)

  23. Nascimento, A.I.; Bastos-Filho, C.J.: A particle swarm optimization based approach for the maximum coverage problem in cellular base stations positioning. In: 2010 10th International Conference on Hybrid Intelligent Systems, pp. 91–96. IEEE (2010)

  24. Wang, S.; Yang, X.; Wang, X.; Qian, Z.: A virtual force algorithm-Lévy-embedded gray wolf optimization algorithm for wireless sensor network coverage optimization. Sensors 19, 2735 (2019)

    Article  Google Scholar 

  25. Miao, Z.; Yuan, X.; Zhou, F.; Qiu, X., et al.: gray wolf optimizer with an enhanced hierarchy and its application to the wireless sensor network coverage optimization problem. Appl. Soft Comput. J. 96, 106602 (2020)

    Article  Google Scholar 

  26. Liao, W.-H.; Kao, Y.; Ru-Ting, Wu.: Ant colony optimization based sensor deployment protocol for wireless sensor networks. Expert Syst. Appl. 38(6), 6599–6605 (2011)

    Article  Google Scholar 

  27. Zhao, Q.; Li, C.; Zhu, D.; Xie, C.: Coverage optimization of wireless sensor networks using combinations of PSO and chaos optimization. Electronics 11(6), 853 (2022)

    Article  Google Scholar 

  28. Yang, H.: A practical method for connectivity and coverage reliability analysis for linear wireless sensor networks. Ad Hoc Netw.Netw. 146, 103183 (2023)

    Article  Google Scholar 

  29. Quan, L.V.; Hanh, N.T.; Binh, H.T.T.; Toan, V.D.; Ngoc, D.T.; Lam, B.T.: A bi-population genetic algorithm based on multi-objective optimization for a relocation scheme with target coverage constraints in mobile wireless sensor networks. Expert Syst. Appl. 217, 1194 (2023)

    Article  Google Scholar 

  30. Hanh, N.T.; Binh, H.T.T.; Truong, V.Q.; Tan, N.P.; Phap, H.C.: Node placement optimization under Q-Coverage and Q-Connectivity constraints in wireless sensor networks. J. Netw. Comput. Appl.Netw. Comput. Appl. 212, 1035 (2023)

    Google Scholar 

  31. Zervoudakis, K.; Tsafarakis, S.: A mayfly optimization algorithm. Comput. Ind. Eng.. Ind. Eng. 145, 106559 (2020)

    Article  Google Scholar 

  32. Zhou, X.-Y.; Wu, Z.-J.; Wang, H.; Li, K.-S.: Elite opposition-based particle swarm optimization. Acta Electron. Sin. Electron. Sin. 41(8), 1647–1652 (2013)

    Google Scholar 

  33. Kennedy, J.; Eberhart, R.: Particle swarm optimization. In: Proc. of 1995 IEEE Int. Conf. Neural Networks, vol. 4, no. 8, pp. 1942–1948 (1995)

  34. Goldberg, D.E.: Genetic Algorithm in Search, Optimization, and Machine Learning. Addison-Wesley Pub. Co (1989)

  35. Yang, X.-S.: Firefly Algorithms for Multimodal Optimization. International Symposium on Stochastic Algorithms 5792, 169–178 (2009)

    MathSciNet  Google Scholar 

  36. Sennan, S.; Ramasubbareddy, S.; Balasubramaniyam, S., et al.: MADCR: mobility aware dynamic clustering-based routing protocol in internet of vehicles. China Commun. 18(7), 69–85 (2021)

    Article  Google Scholar 

  37. Ramasamy, K.; Ravichandran, C.S.: Optimal design of renewable sources of PV/wind/FC generation for power system reliability and cost using MA-RBFNN approach. Int. J. Energy Res. 45(7), 10946–10962 (2021)

    Article  Google Scholar 

  38. Elsisi, M.; Tran, M.-Q.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F.: Robust design of ANFIS-based blade pitch controller for wind energy conversion systems against wind speed fluctuations. IEEE Access 9, 37894–37904 (2022)

    Article  Google Scholar 

  39. Dey, N.; Rajinikanth, V.: A study of the segmentation of tumor in breast MRI using entropy thresholding and the Mayfly algorithm. Mag. Reson. Imaging 83–103 (2022)

  40. Wei, D.; Ji, J.; Fang, J.; Yousefi, N.: Evaluation and optimization of PEM Fuel Cell-based CCHP system based on modified mayfly optimization algorithm. Energy Rep. 7, 7663–7624 (2021)

    Article  Google Scholar 

  41. Mo, S.; Ye, Q.; Jiang, K.; Mo, X.; Shen, G.: An improved MPPT method for photovoltaic systems based on mayfly optimization algorithm. Energy Rep. 8, 141–150 (2022)

    Article  Google Scholar 

  42. Liu, Z.; Jiang, P.; Wang, J.; Zhang, L.: Ensemble forecasting system for short-term wind speed forecasting based on optimal sub-model selection and multi-objective version of mayfly optimization algorithm. Expert Syst. Appl. 117, 114974 (2021)

    Article  Google Scholar 

  43. Zhang, T.; Zhou, Y.; Zhou, G.; Deng, W., et al.: Bioinspired bare bones mayfly algorithm for large-scale spherical minimum spanning tree. Front. Bioeng. Biotechnol. 10, 830037 (2022)

    Article  Google Scholar 

  44. Li, N.; Wang, L.: Bare-bones based sine cosine algorithm for global optimization. J. Comput. Sci.Comput. Sci. 47, 101219 (2020)

    MathSciNet  Google Scholar 

  45. Song, X.-F.; Zhang, Y.; Gong, D.-W.; Sun, X.-Y.: Feature selection using bare-bones particle swarm optimization with mutual information. Pattern Recogn.Recogn. 112, 107804 (2020)

    Article  Google Scholar 

  46. Céspedes-Mota, A.; Castañón, G.; Martínez-Herrera, A.F.; Cárdenas-Barrón, L.E.: Optimization of the distribution and localization of wireless sensor networks based on differential evolution approach. Math. Probl. Eng. 1–12 (2016)

  47. Cheng, E.W.L.; Li, H.; Ho, D.C.K.: Analytic hierarchy process (AHP). Meas. Bus. Excell.Excell. 6(4), 33–37 (2002)

    Article  Google Scholar 

  48. Zhang, Y.; Gong, D.-W.; Sun, X.-Y.; Geng, Na.: Adaptive bare-bones particle swarm optimization algorithm and its convergence analysis. Soft. Comput.Comput. 18(7), 1337–1352 (2014)

    Article  Google Scholar 

  49. Ren, H.; Li, J.; Chen, H.; Li, C.Y.: Adaptive levy-assisted salp swarm algorithm: analysis and optimization case studies. Math. Comput. SimulComput. Simul 181, 380–409 (2021)

    Article  MathSciNet  Google Scholar 

  50. Barshandeh, S.; Haghzadeh, M.: A new hybrid chaotic atom search optimization based on tree-seed algorithm and Levy flight for solving optimization problems. Eng. Comput.Comput. 37, 3079–3122 (2020)

    Article  Google Scholar 

  51. Wang, D.; Meng, Li.; Zhao, W.: Improved bare bones particle swarm optimization with adaptive search center. Chin. J. Comput. 39(12), 2652–2667 (2016)

    MathSciNet  Google Scholar 

  52. Zhou, Y.; Wang, R.; Luo, Q.: Elite opposition-based flower pollination algorithm. Neurocomputing 294–310 (2015)

  53. Zhang, S.; Luo, Q.; Zhou, Y.: Hybrid gray wolf optimizer using elite opposition-based learning strategy and simplex method. Int. J. Comput. Intell. Appl.Comput. Intell. Appl. 16(2), 1750012 (2017)

    Article  Google Scholar 

  54. Huang, K.; Zhou, Y.; Xiuli, Wu.; Luo, Q.: A cuckoo search algorithm with elite opposition-based strategy. J. Intell. Syst.Intell. Syst. 4, 567–593 (2015)

    Google Scholar 

  55. Liu, X.; Xia, X.; Xiong, X.; Guo, Z.: Chaotic artificial bee colony with elite opposition-based learning. Int. J. Comput. Sci. Eng.Comput. Sci. Eng. 18(4), 383–390 (2019)

    Google Scholar 

  56. Sihwail, R.; Omar, K.; Ariffin, K.A.Z.; Tubishat, M.: Improved harris hawks optimization using elite opposition-based learning and novel search mechanism for feature selection. IEEE Access 8, 121127–121145 (2017)

    Article  Google Scholar 

  57. Zhou, B.; He, Z.: A material handling scheduling method for mixed-model automotive assembly lines based on an improved static kitting strategy. Comput. Ind. Eng.. Ind. Eng. 140, 106268.1-1062681.7 (2020)

    Google Scholar 

  58. Yan, Z.; Zhang, J.; Tang, J.: Path planning for autonomous underwater vehicle based on an enhanced water wave optimization algorithm. Math. Comput. SimulComput. Simul 181, 192–241 (2021)

    Article  MathSciNet  Google Scholar 

  59. Storn, R.M.; Price, K.: Differential Evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim.Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  60. Yang, X.S.: Flower pollination algorithm for global optimization. In: Unconventional Computation and Natural Computation, Lecture Notes in Computer Science, vol. 7445, pp. 240–249 (2012)

  61. Mirjalili, S.; Mirjalili, S.M.; Lewis, A.: gray wolf optimizer. Adv. Eng. Softw.Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  62. Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S., et al.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw.Softw. 114, 163–191 (2017)

    Article  Google Scholar 

  63. Khishe, M.; Mosavi, M.R.: Chimp optimization algorithm. Expert Syst. Appl. 149, 113338 (2020)

    Article  Google Scholar 

  64. Derrac, J.; García, S.; Molina, D.; Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput.Evol. Comput. 1(1), 3–18 (2011)

    Article  Google Scholar 

  65. Gibbons, J.D.; Chakraborti, S.: Nonparametric statistical inference. In: International Encyclopedia of Statistical Science, pp. 977–979 (2014)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 62066005, U21A20464, and Program for Young Innovative Research Team in China University of Political Science and Law, under Grant No. 21CXTD02.

Author information

Authors and Affiliations

Authors

Contributions

Guo Zhou: Investigation, experiment, writing-draft; Tian Zhang: Algorithm design & analysis. Yongquan Zhou: Supervision, writing-review and editing.

Corresponding author

Correspondence to Yongquan Zhou.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, G., Zhang, T. & Zhou, Y. Elite Opposition-Based Bare Bones Mayfly Algorithm for Optimization Wireless Sensor Networks Coverage Problem. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08899-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-08899-6

Keywords

Navigation