Skip to main content
Log in

Inhibitor Efficiency of Cocogem Surfactants Based on C18 Carboxylic Acids on Corrosion of Carbon Mild Steel in CO2 Medium

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Corrosion protection of carbon steel in 1% NaCl salt solution saturated with carbon dioxide was studied by potentiodynamic polarization method in the presence of three newly synthesized dissymmetric cocogem surfactants—N,N′-bis(2-hydroxypropyl) hexamethylenediammonium octanoate stearate (NNBOS), N,N′-bis(2-hydroxypropyl) hexamethylenediammonium octanoate oleate (NNBOO) and N,N′-bis(2-hydroxypropyl) hexamethylenediammonium octanoate linolenate (NNBOL). Experimental results revealed that all three compounds—NNBOS, NNBOO and NNBOL—possess high inhibitor efficiency on the protection of carbon steel in 1% NaCl solution saturated with carbon dioxide. Increase in concentrations of NNBOS, NNBOO and NNBOL inhibitors up to 100 ppm in the medium causes increase in their protective effects up to 99.4%. The study of polarization curves confirmed belonging of all three inhibitors to mixed-type inhibitors. Adsorption of inhibitor on the surface of C1018 carbon mild steel corresponds to negative value of Langmuir isotherm model Δ\({G}_{{\text{ads}}}^{0}\). Thermodynamic data for adsorption process were calculated and discussed. Effect of molecular structure on the inhibitor protective effectiveness was studied. Experiments revealed that adsorption energy of NNBOL inhibitor at a concentration of 100 ppm is higher than adsorption energy of NNBOS and NNBOO inhibitors. It occurs due to the presence of three unsaturated double bonds in linolenic acid residue in NNBOL compound corresponding to experimentally determine high inhibitor efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Popoola, L.T.; Grema, A.S.; Latinwo, G.K.; Gutti, B.; Balogun, A.S.: Corrosion problems during oil and gas production and its mitigation. Int. J. Ind. Chem. 4, 275–289 (2013). https://doi.org/10.1186/2228-5547-4-35

    Article  Google Scholar 

  2. Tuttle, R.N.: Corrosion in oil and gas production. J. Pet. Technol. 39, 756–762 (1987). https://doi.org/10.2118/17004-PA

    Article  CAS  Google Scholar 

  3. Zhang, S.; Hou, L.; Du, H.; Wei, H.; Liu, B.; Wei, Y.: A study on the interaction between chloride ions and CO2 towards carbon steel corrosion. Corros. Sci.. Sci. 167, 108531 (2020). https://doi.org/10.1016/j.corsci.2020.108531

    Article  CAS  Google Scholar 

  4. Soares, C.G.; Garbatov, Y.; Zayed, A.: Effect of environmental factors on steel plate corrosion under marine immersion conditions. Corros. Eng. Sci. Technol.. Eng. Sci. Technol. 46, 524–541 (2011). https://doi.org/10.1179/147842209X12559428167841

    Article  CAS  Google Scholar 

  5. Grainger, A.; Smith, G.: The role of low carbon and high carbon materials in carbon neutrality science and carbon economics. Curr. Opin. Environ. Sustain.. Opin. Environ. Sustain. 49, 164–189 (2021). https://doi.org/10.1016/j.cosust.2021.06.006

    Article  Google Scholar 

  6. Abd El-Lateef, H.M.; Abbasov, V.M.; Aliyeva, L.I.; Qasimov, E.E.; Ismayilov, I.T.: Inhibition of carbon steel corrosion in CO2-saturated brine using some newly surfactants based on palm oil: experimental and theoretical investigations. Mater. Chem. Phys. 142, 502–512 (2013). https://doi.org/10.1016/j.matchemphys.2013.07.044

    Article  CAS  Google Scholar 

  7. Abadeh, H.K.; Javidi, M.: Assessment and influence of temperature, NaCl and H2S on CO2 corrosion behavior of different microstructures of API 5L X52 carbon steel in aqueous environments. J. Nat. Gas Sci. Eng. 67, 93–107 (2019). https://doi.org/10.1016/j.jngse.2019.04.023

    Article  CAS  Google Scholar 

  8. Abd El-Lateef, H.M.; Aliyeva, L.I.; Abbasov, V.M.; Ahmedov, N.S.: Corrosion behaviour of steel in carbonic acid media. Process. Petrochem. Oil Refin. 12, 199–214 (2011)

    CAS  Google Scholar 

  9. Aghazada, Y.J.; Abbasov, V.M.; Mursalov, N.I.; Abdullayev, S.E.; Yolchuyeva, U.J.: Investigation of the inhibitory-bactericidal effect of amidoamine-based inorganic complexes against microbiological and atmospheric corrosion. Pol. J. Chem. Tech. 22(3), 29–37 (2020)

    Article  CAS  Google Scholar 

  10. Kousar, K.; Walczak, M.S.; Ljungdahl, T.; Wetzel, A.; Oskarsson, H.; Restuccia, P.; Ahmad, E.A.; Harrison, N.M.; Lindsay, R.: Corrosion inhibition of carbon steel in hydrochloric acid: elucidating the performance of an imidazoline-based surfactant. Corros. Sci.. Sci. 180, 109195 (2021). https://doi.org/10.1016/j.corsci.2020.109195

    Article  CAS  Google Scholar 

  11. Abbasov, V.M.; Mursalov, N.I.; Guliyev, A.A.; Jabrailzadeh, Sh.Z.; Duzdaban, Kh.R.: Synthesis of imidazoline derivatives on the basis of triethylenetetramine and naphthenic acids and research of imidazoline derivatives as corrosion inhibitor. Int. J. Eng. Innov. Technol. (IJEIT) 5, 21–23 (2015)

    Google Scholar 

  12. Shamsa, A.; Barmatov, E.; Hughesb, T.L.; Hua, Y.; Neville, A.; Barker, R.: Hydrolysis of imidazoline based corrosion inhibitor and effects on inhibition performance of X65 steel in CO2 saturated brine. J. Pet. Sci. Eng. 208, 109235 (2022). https://doi.org/10.1016/j.petrol.2021.109235

    Article  CAS  Google Scholar 

  13. Stoyanova, A.; Slavcheva, E.: Effect of the molecular structure of some quinones on their corrosion inhibiting action. Mater. Corros.Corros. 62, 872–877 (2011). https://doi.org/10.1002/maco.200905579

    Article  CAS  Google Scholar 

  14. Aouniti, A.; Khaled, K.F.; Hammouti, B.: Correlation between inhibitor efficiency and chemical structure of some amino acids on the corrosion of armco iron in molar HCl synthesis, characterization and corrosion inhibition of novel pyridine on mild steel in hydrochloric acid environment. Int. J. Electrochem. Sci.Electrochem. Sci. 8, 5925–5943 (2013). https://doi.org/10.1016/S1452-3981(23)14731-6

    Article  CAS  Google Scholar 

  15. Basma, A.H.; Hiba, H.I.: Synthesis characterization and corrosion inhibition of novel pyridine on mild steel in hydrochloric acid environment. J. Appl. Sci. Nanotechnol. 2, 55–63 (2022). https://doi.org/10.53293/jasn.2021.3862.1050

    Article  Google Scholar 

  16. Ogunyemi, B.T.; Latona, D.F.; Ayinde, A.A.; Adejoro, I.A.: Theoretical investigation to corrosion inhibitor efficiency of some chloroquine derivatives using density functional theory. Adv. J. Chem. Sect. A 3, 485–492 (2020). https://doi.org/10.33945/SAMI/AJCA.2020.4.10

    Article  CAS  Google Scholar 

  17. Wang, X.; Liu, S.; Yan, J.; Zhang, J.; Zhang, Q.; Yan, Y.: Recent progress of polymeric corrosion inhibitor: structure and application. Materials 16, 2954 (2023). https://doi.org/10.3390/ma16082954

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen, Y.: Effect of Schiff’s bases structure on corrosion inhibitor efficiency of copper in chloride solutions. Int. J. Electrochem. Sci.Electrochem. Sci. 17, 220413 (2022). https://doi.org/10.20964/2022.04.13

    Article  CAS  Google Scholar 

  19. Farelas, F.; Ramirez, A.: Carbon dioxide corrosion inhibition of carbon steels through bis-imidazoline and imidazoline compounds studied by EIS. Int. J. Electrochem. Sci.Electrochem. Sci. 5, 797–814 (2010)

    Article  CAS  Google Scholar 

  20. Finšgar, M.; Jackson, J.: Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: a review. Corros. Sci.. Sci. 86, 17–41 (2014). https://doi.org/10.1016/j.corsci.2014.04.044

    Article  CAS  Google Scholar 

  21. Mobin, M.; Aslam, R.; Aslam, J.: Synergistic effect of cationic gemini surfactants and butanol on the corrosion inhibition performance of mild steel in acid solution. Mater. Chem. Phys. 223, 623–633 (2019). https://doi.org/10.1016/j.matchemphys.2018.11.032

    Article  CAS  Google Scholar 

  22. Palimi, M.J.; Tang, Y.; Alvarez, V.; Kuru, E.; Li, D.Y.: Green corrosion inhibitors for drilling operation: new derivatives of fatty acid-based inhibitors in drilling fluids for 1018 carbon steel in CO2-saturated KCl environments. Mater. Chem. Phys. 288, 126406 (2022). https://doi.org/10.1016/j.matchemphys.2022.126406

    Article  CAS  Google Scholar 

  23. Askari, M.; Aliofkhazraei, M.; Jafari, R.; Hamghalam, P.; Hajizadeh, A.: Downhole corrosion inhibitors for oil and gas production—a review. Appl. Surf. Sci. Adv. 6, 100128 (2021). https://doi.org/10.1016/j.apsadv.2021.100128

    Article  Google Scholar 

  24. Brycki, B.; Szulc, A.: Gemini surfactants as corrosion inhibitors, A review. J. Mol. Liq. 344, 117686 (2021). https://doi.org/10.1016/j.molliq.2021.117686

    Article  CAS  Google Scholar 

  25. Heakal, F.E.T.; Elkholy, A.E.: Gemini surfactants as corrosion inhibitors for carbon steel. J. Mol. Liq. 230, 395–407 (2017). https://doi.org/10.1016/j.molliq.2017.01.047

    Article  CAS  Google Scholar 

  26. Aiad, I.A.; Hafiz, A.A.; El-Awady, M.Y.; Habib, A.O.: Some imidazoline derivatives as corrosion inhibitors. J. Surfact. Deterg. 13, 247–254 (2010). https://doi.org/10.1007/s11743-009-1168-9

    Article  CAS  Google Scholar 

  27. Asadov, Z.H.; Ahmadova, G.A.; Rahimov, R.A.; Huseynova, S.M.; Suleymanova, S.A.; Ismailov, E.H.; Zubkov, F.I.; Mammadov, A.M.; Agamaliyeva, D.B.: Effect of spacer nature on surface properties of new counterion coupled gemini surfactants based on dodecyldiisopropylol amine and dicarboxylic acids. Colloids Surf. A 550, 115–122 (2018). https://doi.org/10.1016/j.colsurfa.2018.04.020

    Article  CAS  Google Scholar 

  28. Hasanov, E.E.; Rahimov, R.A.; Abdullayev, Y.; Asadov, Z.H.; Ahmadova, G.A.; Isayeva, A.M.; Ahmadbayova, S.F.; Zubkov, F.I.; Autschbach, J.: New class of cocogem surfactants based on hexamethylenediamine, propylene oxide, and long chain carboxylic acids: theory and application. J. Ind. Eng. Chem. 86, 123–135 (2020). https://doi.org/10.1016/j.jiec.2020.02.019

    Article  CAS  Google Scholar 

  29. Wang, X.; Qian, J.; Sun, Z.; Zhang, Z.; He, M.: Synthesis, characterization and functional evaluation of branched dodecyl phenol polyoxyethylene ethers: a novel class of surfactants with excellent wetting properties. RSC Adv. 11, 38054–38059 (2021). https://doi.org/10.1039/D1RA06873C

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Anusuya, N.; Saranya, J.; Sounthari, P.; Zarrouk, A.; Chitra, S.: Corrosion inhibition and adsorption behaviour of some bis-pyrimidine derivatives on mild steel in acidic medium. J. Mol. Liq. 225, 406–417 (2017). https://doi.org/10.1016/j.molliq.2016.11.015

    Article  CAS  Google Scholar 

  31. Damej, M.; Skal, S.; Aslam, J.; Zouarhi, M.; Erramli, H.; Alrashdi, A.A.; Lee, H.-S.; Elaoufir, Y.; Lgaz, H.: An environmentally friendly formulation based on Cannabis sativa L. seed oil for corrosion inhibition of E24 steel in HCl medium: experimental and theoretical study. Colloids Surf A Physicochem Eng AspPhysicochem Eng Asp 643, 128745 (2022). https://doi.org/10.1016/j.colsurfa.2022.128745

    Article  CAS  Google Scholar 

  32. Belghiti, M.E.; Bouazama, S.; Echihi, S.; Mahsoune, A.; Elmelouky, A.; Dafali, A.; Emran, K.M.; Hammouti, B.; Tabyaoui, M.: Understanding the adsorption of newly Benzylideneaniline derivatives as a corrosion inhibitor for carbon steel in hydrochloric acid solution: experimental, DFT and molecular dynamic simulation studies. Arab. J. Chem. 13, 1499–1519 (2020). https://doi.org/10.1016/j.arabjc.2017.12.003

    Article  CAS  Google Scholar 

  33. Shaban, M.M.; Eid, A.M.; Farag, R.K.; Negm, N.A.; Fadda, A.A.; Migahed, M.A.: Novel trimeric cationic pyrdinium surfactants as bi-functional corrosion inhibitors and antiscalants for API 5L X70 carbon steel against oilfield formation water. J. Mol. Liq. 305, 112817 (2020). https://doi.org/10.1016/j.molliq.2020.112817

    Article  CAS  Google Scholar 

  34. Huang, H.; Wang, Z.; Gong, Y.; Gao, F.; Luo, Z.; Zhang, S.; Li, H.: Water soluble corrosion inhibitors for copper in 3.5wt% sodium chloride solution. Corros. Sci.. Sci. 123, 339–350 (2017). https://doi.org/10.1016/j.corsci.2017.05.009

    Article  ADS  CAS  Google Scholar 

  35. Amin, M.A.: Weight loss, polarization, electrochemical impedance spectroscopy, SEM and EDX studies of the corrosion inhibition of copper in aerated NaCl solutions. J. Appl. Electrochem. Electrochem. 36, 215–226 (2006). https://doi.org/10.1007/s10800-005-9055-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We express our sincere gratitude to Prof. Vagif M. Abbasov, the General Director of the Institute of Petrochemical Processes of the Ministry of Science and Education of the Republic of Azerbaijan, for his decisive support and provision of conditions for conducting our experiments. Thanks to his initiative and continuous support, we were able to successfully carry out our research project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Khuraman A. Mammadova or Ravan A. Rahimov.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1893 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mammadova, K.A., Mursalov, N.I., Rahimov, R.A. et al. Inhibitor Efficiency of Cocogem Surfactants Based on C18 Carboxylic Acids on Corrosion of Carbon Mild Steel in CO2 Medium. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08868-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-08868-z

Keywords

Navigation