Skip to main content

Advertisement

Log in

Drilling Studies on MWCNT- and Zirconia-Reinforced Aluminium Alloy 8011 Hybrid Composite: A Machine Learning Approach

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Emerging novel composites fabricated from aluminium alloys incorporating high strength and fracture-resistant ceramics with multi-walled carbon nanotubes (MWCNTs) are used frequently in aeronautical and structural engineering fields. This research aims to examine the machinability of composites made from AA8011, consisting of 3 wt.% MWCNTs and varying weight proportions of zirconium dioxide (ZrO2) (5, 10, and 15 wt.%) fabricated via ultrasonic-assisted stir casting method. Drilling experiments are designed based on the mixed-level design (L18 21,33) of Taguchi's approach with two levels of drill point angle and three levels of % ZrO2, rotational speed (RS), and feed rate (FR). The casted micrographs show near uniform dispersal of reinforcements present in the grain boundaries, improving the dislocation density and material strength. Observation shows that with a higher addition of ZrO2, tool wear (TW) and surface roughness (SR) increase with a reduction in material removal rate (MRR), attributed to the hard ceramic reinforcements in the soft matrix. MWCNTs act as a solid lubricant, which lowers the friction between the workpiece and carbide tool. The desirability approach produces an ideal condition of 118°-point angle, 5% addition of ZrO2, 1439 rpm of RS, and 0.174 mm/rev of FR. With optimum conditions, the MRR is increased by 9.95%, and TW and SR are reduced by 6.37 and 0.69%. A machine learning approach random forest algorithm (RFA) implemented produces a near-predicted value to the experimental outputs with a correlation coefficient of 99.5, 99.56, and 98.95 for MRR, TW, and SR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Availability of Data and Materials

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Nieto, A.; Agarwal, A.; Lahiri, D.; Bisht, A.; Bakshi, S.R.: Carbon Nanotubes: Reinforced Metal Matrix Composites. C.R.C. Press, United States (2021)

    Book  Google Scholar 

  2. Agarwal, A.; Bakshi, S.R.; Lahiri, D.: Carbon Nanotubes: Reinforced Metal Matrix Composites. Press, United States, C.R.C (2018)

    Book  Google Scholar 

  3. Tjong, S.C.: Carbon Nanotube Reinforced Composites: Metal and Ceramic Matrices. Wiley, Germany (2009)

    Book  Google Scholar 

  4. Upadhyay, G.; Saxena, K.K.; Sehgal, S.; Mohammed, K.A.; Prakash, C.; Dixit, S.; Buddhi, D.: Development of carbon nanotube (C.N.T.)-reinforced Mg alloys: fabrication routes and mechanical properties. Metals 12(8), 1392 (2022)

    Article  CAS  Google Scholar 

  5. Bakshi, S.R.; Agarwal, A.; Bisht, A.; Lahiri, D.; Nieto, A.: Carbon Nanotube Nanotubes: Reinforced Metal Matrix Composites. Press, United States, C.R.C (2021)

    Google Scholar 

  6. Li, N.; Li, Y.; Zhou, J.; He, Y.; Hao, X.: Drilling delamination and thermal damage of carbon nanotube/carbon fiber reinforced epoxy composites processed by microwave curing. Int. J. Mach. Tools Manuf 97, 11–17 (2015)

    Article  Google Scholar 

  7. Babu, J.S.S.; Lee, C.H.; Kang, C.G.: Study of the mechanical and workability properties of extruded aluminium (Al6061) based composites reinforced with MWCNTs. J. Mater. Res. Technol. 9(3), 5278–5292 (2020)

    Article  CAS  Google Scholar 

  8. Doğan, K.; Özgün, M.I.; Sübütay, H.; Salur, E.; Eker, Y.; Kuntoğlu, M.; Aslan, A.; Gupta, M.K.; Acarer, M.: Dispersion mechanism-induced variations in microstructural and mechanical behavior of CNT-reinforced aluminum nanocomposites. Arch. Civ. Mech. Eng. 22, 55 (2022)

    Article  Google Scholar 

  9. Ram, H.R.A.; Kashyap, K.T.: Enhanced precipitation nucleation rates in MWCNT reinforced aluminium alloy 6061 nanocomposites. Trans. Indian Inst. Met. 67, 651–658 (2014)

    Article  CAS  Google Scholar 

  10. Sabouni, H.R.; Sabooni, S.: Tribological and mechanical properties of Al(Cu)/MWCNT nanocomposite prepared by mechanical alloying and hot extrusion. Russ. J. Non-Ferr. Metals 58, 656–663 (2017)

    Article  Google Scholar 

  11. Srinivas, V.; Jayaraj, A.; Venkataramana, V.S.N.; Avinash, T.; Dhanyakanth, P.: Effect of ultrasonic stir casting technique on mechanical and tribological properties of aluminium–multi-walled carbon nanotube nanocomposites. J. Bio- Tribo-Corros. 6, 30 (2020)

    Article  Google Scholar 

  12. Jayaraj, A.; Moorthy, C.V.K.N.S.N.V.S.; Venkataramana, N.; Jaikumar, S.; Srinivas, V.: Corrosion, mechanical and thermal properties of aluminium alloy metal matrix nano composites (AA-MMNCs) with multi-walled carbon nanotubes. S.N. Appl. Sci. 2, 1259 (2020)

    Article  CAS  Google Scholar 

  13. Jadam, T.; Sahu, S.K.; Datta, S.; Masanta, M.: E.D.M. performance of Inconel 718 superalloy: application of multi-walled carbon nanotube (MWCNT) added dielectric media. J. Brazil. Soc. Mech. Sci. Eng. 41, 305 (2019)

    Article  Google Scholar 

  14. Suresh, S.; Sudhakara, D.; Vinod, B.: Investigation on mechanical, wear, and machining characteristics of Al 7075/MWCNTs using the liquid state method. Adv. Compos. Hybrid Mater. 3, 243–254 (2020)

    Article  Google Scholar 

  15. Kharwar, P.K.; Verma, R.K.: Multiple machining performance optimization in drilling of MWCNT/Epoxy nanocomposites using TOPSIS and grey theory. J. Adv. Manuf. Syst. 20(2), 249–271 (2021)

    Article  Google Scholar 

  16. Singh, K.K.; Kumar, D.: Experimental investigation and modelling of drilling on multi-wall carbon nanotube–embedded epoxy/glass fabric polymeric nanocomposites. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 232(11), 1943–1959 (2018)

    Article  CAS  Google Scholar 

  17. Nguyen, V.-H.; Le, T.-T.; Le, M.V.; Minh, H.D.; Nguyen, A.-T.: Multiobjective optimization based on machine learning and non-dominated sorting genetic algorithm for surface roughness and tool wear in Ti6Al4V turning. Mach. Sci. Technol. 27(4), 380–421 (2023)

    Article  CAS  Google Scholar 

  18. Amor, N.; Noman, M.T.; Petru, M.; Sebastian, N.; Balram, D.: A review on computational intelligence methods for modeling of light weight composite materials. Appl. Soft Comput. 147, 110812 (2023)

    Article  Google Scholar 

  19. Smith, C.: Decision Trees and Random Forests: A Visual Introduction for Beginners. Canada, Blue Windmill Media (2017)

    Google Scholar 

  20. Khan, A.Q.; Naveed, M.H.; Rasheed, M.D.; Pengyong: Prediction of compressive strength of fly ash-based geopolymer concrete using supervised machine learning methods. Arab. J. Sci. Eng. (2023). https://doi.org/10.1007/s13369-023-08283-w

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sankaranarayanan, R.; Hynes, N.R.J.; Kumar, J.S.; Sujana, J.A.J.: Random decision forest based sustainable green machining using Citrullus lanatus extract as bio-cutting fluid. J. Manuf. Process. 68(A), 1814–1823 (2021)

    Article  Google Scholar 

  22. Alsaihati, A.; Elkatatny, S.: A new method for drill cuttings size estimation based on machine learning technique. Arab. J. Sci. Eng. 48, 16739–16751 (2023)

    Article  CAS  Google Scholar 

  23. Amadi, K.; Iyalla, I.; Prabhu, R.; Alsaba, M.; Waly, M.: Development of predictive optimization model for autonomous rotary drilling system using machine learning approach. J. Pet. Explor. Prod. Technol. 13, 2049–2062 (2023)

    Article  Google Scholar 

  24. Agarwal, R.; Singh, J.; Gupta, V.: An intelligent approach to predict thermal injuries during orthopaedic bone drilling using machine learning. J. Braz. Soc. Mech. Sci. Eng. 44, 320 (2022)

    Article  Google Scholar 

  25. Lee, S.K.H.; Simeth, A.; Hinchy, E.P.; Plapper, P.; O’Dowd, N.P.; Conor, T.A.: Vision-based hole quality assessment technique for robotic drilling of composite materials using a hybrid classification model. Int. J. Adv. Manuf. Technol. 129, 1249–1258 (2023)

    Article  Google Scholar 

  26. Fan, J.; Ren, X.; Pan, R.; Wang, P.; Tao, H.: Model and optimize the magnetic composite fluid (M.C.F.) polishing process with machine learning modeling and intelligent optimization algorithm. Int. J. Precis. Eng. Manuf. 23, 957–967 (2022)

    Article  Google Scholar 

  27. Biswas, S.; Singh, Y.; Mukherjee, M.; Datta, S.; Barman, S.; Raja, M.: Design of multi-material model for wire electro-discharge machining of SS304 and SS316 using machine learning and MCDM techniques. Arab. J. Sci. Eng. 47, 15755–15778 (2022)

    Article  CAS  Google Scholar 

  28. Shi, C.; Shen, K.: Twin-roll casting 8011 aluminium alloy strips under ultrasonic energy field. Int. J. Lightweight Mater. Manuf. 1(2), 108–114 (2018)

    Google Scholar 

  29. Morais, S. (2019) Multi-Walled Carbon Nanotubes, MDPI AG, Switzerland

  30. Haghi, A.K.; Abraham, A.R.; George, S.C.: Carbon Nanotubes: Functionalization and Potential Applications. Apple Academic Press, Canada (2022)

    Google Scholar 

  31. Ma, Z.; Wang, Q.; Liang, Y.; Cui, Z.; Meng, F.; Chen, L.; Wang, Z.; Yu, T.; Liu, C.: The mechanism and machinability of laser-assisted machining zirconia ceramics. Ceram. Int. 49(11A), 16971–16984 (2023)

    Article  CAS  Google Scholar 

  32. Wiśniewska, M.; Laptev, A.M.; Marczewski, M.; Leshchynsky, V.; Lota, G.; Acznik, I.; Celotti, L.; Sullivan, A.; Szybowicz, M.; Garbiec, D.: Influence of carbon nanotubes on thermal and electrical conductivity of zirconia-based composite. Ceram. Int. 49(10), 15442–15450 (2023)

    Article  Google Scholar 

  33. Idrisi, A.H.; Mourad, A.-H.I.: Conventional stir casting versus ultrasonic assisted stir casting process: mechanical and physical characteristics of A.M.C.s. J. Alloy. Compd. 805, 502–508 (2019)

    Article  CAS  Google Scholar 

  34. Madhukar, P.; Selvaraj, N.; Rao, C.S.P.; Kumar, G.B.V.: Fabrication and characterization two step stir casting with ultrasonic assisted novel AA7150-hBN nanocomposites. J. Alloy. Compd. 815, 152464 (2020)

    Article  CAS  Google Scholar 

  35. Kamaraj, L.; Hariharasakthisudhan, P.; Moshi, A.A.M.: Optimizing the ultrasonication effect in stir-casting process of aluminum hybrid composite using desirability function approach and artificial neural network. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 235(9), 2007–2021 (2021)

    Article  CAS  Google Scholar 

  36. Montgomery, D.C.; Jones, B.: Design of Experiments: A Modern Approach. Wiley, United Kingdom (2020)

    Google Scholar 

  37. Tamizharasan, T.; Senthilkumar, N.; Selvakumar, V.; Dinesh, S.: Taguchi’s Methodology of optimising turning parameters over chip thickness ratio in machining P/M AMMC. S.N. Appl. Sci. 1(2), 160 (2019)

    Article  CAS  Google Scholar 

  38. Das, P.P.; Gupta, P.; Ghadai, R.K.; Ramachandran, M.; Kalita, K.: Optimization of turning process parameters by taguchi-based six sigma. Mech. Mech. Eng. 21(3), 649–656 (2017)

    Google Scholar 

  39. Hussain, O.; Ahmad, B.; Saleem, S.: Analysis of tribological behavior of medical-grade UHMW polyethylene under dry and lubricated conditions with human body fluids using Taguchi and G.R.A. techniques. J. Thermoplast. Compos. Mater. 35(11), 1940–1956 (2022)

    Article  CAS  Google Scholar 

  40. Taguchi, S.; Chowdhury, S.; Wu, Y.; Yano, H.; Taguchi, G.: Taguchi’s Quality Engineering Handbook. Wiley, United States (2005)

    Google Scholar 

  41. Senthilkumar, N.; Ganapathy, T.; Tamizharasan, T.: "Optimisation of machining and geometrical parameters in turning process using Taguchi method. Aust. J. Mech. Eng. 12(2), 233–246 (2014)

    Article  Google Scholar 

  42. Amor, N.; Noman, M.T.; Petru, M.; Sebastian, N.; Balram, D.: Design and optimization of machinability of ZnO embedded-glass fiber reinforced polymer composites with a modified white shark optimizer. Expert Syst. Appl. 237(A), 121474 (2024)

    Article  Google Scholar 

  43. Jain, K.C.; Chitale, A.K.: Textbook of Production Engineering. PHI Learning, India (2014)

    Google Scholar 

  44. Freeman, L.; Montgomery, D.C.; Rigdon, S.E.; Pan, R.: Design of Experiments for Reliability Achievement. Wiley, United Kingdom (2022)

    Google Scholar 

  45. Das, D.; Selvamuthu, D.: Introduction to Statistical Methods, Design of Experiments and Statistical Quality Control. Springer, Germany (2018)

    Google Scholar 

  46. Vasanthkumar, P.; Balasundaram, R.; Senthilkumar, N.: Sliding friction wear behaviour of seashell particulate reinforced polymer matrix composite – modeling and optimization through R.S.M. and grey wolf optimizer. Trans. Can. Soc. Mech. Eng. 46(2), 329–345 (2022)

    Article  Google Scholar 

  47. Jones, B.; Montgomery, D.C.: Design of Experiments: A Modern Approach. Wiley, United Kingdom (2020)

    Google Scholar 

  48. Youngberg, C. (2021) Machine Learning for Beginners Book: Decision Trees and Random Forests Work: Classification Machine Learning Algorithms, Amazon Digital Services L.L.C., K.D.P. Print, U.S.A.

  49. Renganathan, V.: Machine Learning Algorithms for Data Scientists: An Overview. Self Published, India (2021)

    Google Scholar 

  50. Schonlau, M.; Zou, R.Y.: The random forest algorithm for statistical learning. Stand. Genomic Sci. 20(1), 3–29 (2020). https://doi.org/10.1177/1536867X20909688

    Article  Google Scholar 

  51. Ashrith, H.S.; Doddamani, M.: Point angle effect in drilling of syntactic foams. Composites Part C 6, 100179 (2021)

    Google Scholar 

  52. Astakhov, V.P.: Geometry of single-point turning tools and drills: fundamentals and practical applications. Springer-Verlag, London (2010)

    Book  Google Scholar 

  53. Sharath, B.N.; Venkatesh, C.V.; Afzal, A.; Aslfattahi, N.; Aabid, A.; Baig, M.; Saleh, B.: Multi ceramic particles inclusion in the aluminium matrix and wear characterization through experimental and response surface-artificial neural networks. Materials 14(11), 2895 (2021)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rampal; Kumar, G.; Rangappa, S.M.; Siengchin, S.; Zafar, S.: A review of recent advancements in drilling of fiber-reinforced polymer composites. Composites Part C 9, 100312 (2022)

    CAS  Google Scholar 

  55. Gajalakshmi, K.; Senthilkumar, N.; Palanikumar, K.: Experimental analysis and optimization on machining of coated carbon fiber and nanoclay reinforced aluminum hybrid composites. Carbon Letters 32, 815–833 (2022)

    Article  Google Scholar 

  56. Kumar, P.P.; Ruban, M.; Daniel, A.A.; Pugazhenthi, R.; Santhosh, K.: Influence of control parameters during drilling of aluminum reinforced with H.N.T. hybrid matrix composites. Adv. Mater. Sci. Eng. 2023, 3692311 (2023)

    Article  Google Scholar 

  57. Josyula, S.K.; Narala, S.K.R.: Performance enhancement of cryogenic machining and its effect on tool wear during turning of Al-TiCp composites. Mach. Sci. Technol. 22(2), 225–248 (2018)

    Article  CAS  Google Scholar 

  58. Demir, Z.: An experimental investigation of the effects of point angle on the high-speed steel drills performance in drilling. Measurement Control 51(9–10), 417–430 (2018)

    Article  Google Scholar 

  59. Ficici, F.: Evaluation of surface roughness in drilling particle-reinforced composites. Adv. Compos. Lett. 2020, 29 (2020)

    Google Scholar 

  60. Palanikumar, K.; Velavan, K.; Elango, N.; Senthilkumar, N.; Kanesan, M.: Drilling parameters analysis on in-Situ Al/B4C/Mica hybrid composite and an integrated optimization approach using fuzzy model and non-dominated sorting genetic algorithm. Metals 11(12), 2060 (2021)

    Article  Google Scholar 

  61. Gutema, E.M.; Gopal, M.; Lemu, H.G.: Temperature optimization by using response surface methodology and desirability analysis of aluminium 6061. Materials 15(17), 5892 (2022)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Palanikumar, K.; Muthukrishnan, N.; Hariprasad, K.S.: Surface roughness parameters optimization in machining A356/SiC/20p metal matrix composites by PCD tool using response surface methodology and desirability function. Mach. Sci. Technol. 12(4), 529–545 (2008)

    Article  CAS  Google Scholar 

  63. Omar, K.S.; Islam, M.N.; Khan, N.S.: Chapter 9 - Exploring tree-based machine learning methods to predict autism spectrum disorder. In: El-Baz, A.S.; Suri, J.S. (Eds.) Neural Engineering Techniques for Autism Spectrum Disorder, pp. 165–183. Academic Press (2021). https://doi.org/10.1016/B978-0-12-822822-7.00009-0

    Chapter  Google Scholar 

Download references

Funding

The authors declare that no funds were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. VS, EB, GSR, and NS performed material preparation, data collection, and analysis. VS and NS wrote the first draft of the manuscript, and all authors commented on previous versions.

Corresponding author

Correspondence to N. Senthilkumar.

Ethics declarations

Conflict of interests

The authors have no relevant financial or non-financial interests to disclose.

Consent for Publication

We hereby provide consent for the publication of the manuscript detailed above, including any accompanying images or data contained within the manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senthil, V., Balasubramanian, E., Raju, G.S. et al. Drilling Studies on MWCNT- and Zirconia-Reinforced Aluminium Alloy 8011 Hybrid Composite: A Machine Learning Approach. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08792-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-08792-2

Keywords

Navigation