Skip to main content
Log in

Silver Nanofluid-Based Thermal Management for Effective Cooling of Batteries in Electric Vehicle Systems

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

To achieve efficient cooling capabilities in electric vehicle (EV) batteries, battery thermal management systems with higher power density have garnered significant attention. This work introduces a novel computational analysis method to assess the temperature distribution within the designed multiple EV battery cooling module's, investigating the flow of both water and silver-based nanofluids as coolants. The EV battery module under study comprises ten cylindrical lithium-ion batteries of model 18,650 types. This comprehensive simulation considered various factors, such as the coolant's flow path, flow rate and type, appear to have significantly influencing temperature distribution. The analysis identifies “Case IV” as the most effective cooling configuration utilizing water as the coolant and demonstrating superior cooling capabilities compared to the conventional cooling module (“Case I”). This finding marks a critical step toward optimizing battery cooling methods and achieving efficient thermal management. The incorporation of silver nanoparticles in the base fluid (water) enhances the nanofluid's thermal conductivity and heat transfer efficiency, showcasing improved cooling capabilities beyond that of water alone. The performance of different nanofluid concentrations including 0.25% and 0.50% by volume was evaluated to demonstrate their impact on battery cooling efficiency. To contextualize the results, the cooling performance of silver nanofluids has been compared with that of TiO2 nanofluids reported in previous studies. The outcomes of this research underscore the potential of the computational analysis technique to advance temperature management systems for EV batteries, improving EVs performance and reliability and contributing to a more sustainable and efficient future of transportation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aminzadegan, S.; Shahriari, M.; Mehranfar, F.; Abramović, B.: Factors affecting the emission of pollutants in different types of transportation: a literature review. Energy Rep. 8, 2508–2529 (2022). https://doi.org/10.1016/j.egyr.2022.01.161

    Article  Google Scholar 

  2. Watabe, A.; Leaver, J.; Ishida, H.; Shafiei, E.: Impact of low emissions vehicles on reducing greenhouse gas emissions in Japan. Energy Policy 130, 227–242 (2019). https://doi.org/10.1016/j.enpol.2019.03.057

    Article  CAS  Google Scholar 

  3. Yang, F.; Xie, Y.; Deng, Y.; Yuan, C.: Predictive modeling of battery degradation and greenhouse gas emissions from US state-level electric vehicle operation. Nat. Commun.Commun. 9(1), 2429 (2018). https://doi.org/10.1038/s41467-018-04826-0

    Article  ADS  CAS  Google Scholar 

  4. Jenn, A.: Emissions benefits of electric vehicles in Uber and Lyft ride-hailing services. Nat. Energy 5(7), 520–525 (2020). https://doi.org/10.1038/s41560-020-0632-7

    Article  ADS  CAS  Google Scholar 

  5. Valera-Medina, A., et al.: Review on Ammonia as a potential fuel: from synthesis to economics. Energy Fuels 35(9), 6964–7029 (2021). https://doi.org/10.1021/acs.energyfuels.0c03685

    Article  CAS  Google Scholar 

  6. Albatayneh, A.; Juaidi, A.; Jaradat, M.; Manzano-Agugliaro, F.: Future of electric and hydrogen cars and trucks: an overview. Energies 16(7), 3230 (2023). https://doi.org/10.3390/en16073230

    Article  CAS  Google Scholar 

  7. Hoeft, F.: Internal combustion engine to electric vehicle retrofitting: potential customer’s needs, public perception and business model implications. Transport. Res. Interdiscip. Perspect. 9, 100330 (2021). https://doi.org/10.1016/j.trip.2021.100330

    Article  Google Scholar 

  8. Hern, A.: Netherland moots electric car future with petrol and diesel ban by 2025. https://www.theguardian.com/technology/2016/apr/18/netherlands-parliament-electric-car-petrol-diesel-ban-by-2025.

  9. Renault. 50,000th Renault Zoe rolls off production line.http://www.conceptcarz.com/a15505/50000TH-RENAULT-ZOE-ROLLS-OFF-PRODUCTION-LINE.aspx.

  10. Zhao, G.; Wang, X.; Negnevitsky, M.: Connecting battery technologies for electric vehicles from battery materials to management. iScience 25(2), 103744 (2022). https://doi.org/10.1016/j.isci.2022.103744

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, Y., et al.: A review of lithium–ion battery safety concerns: the issues, strategies, and testing standards. J. Energy Chem. 59, 83–99 (2021). https://doi.org/10.1016/j.jechem.2020.10.017

    Article  ADS  CAS  Google Scholar 

  12. Subramanian, Y., et al.: A review on applications of carbon nanotubes-based metal-sulfide composite anode materials (CNTs/MS) for sodium (Na)-ion batteries. Emergent Mater. (2023). https://doi.org/10.1007/s42247-023-00501-3

    Article  Google Scholar 

  13. Ma, S., et al.: Temperature effect and thermal impact in Lithium–ion batteries: a review. Progr. Natural Sci. Mater. Int. 28(6), 653–666 (2018). https://doi.org/10.1016/j.pnsc.2018.11.002

    Article  CAS  Google Scholar 

  14. Cao, R.; Zhang, X.; Yang, H.; Wang, C.: Experimental study on heat generation characteristics of Lithium–ion batteries using a forced convection calorimetry method. Appl. Therm. Eng. 219, 119559 (2023). https://doi.org/10.1016/j.applthermaleng.2022.119559

    Article  CAS  Google Scholar 

  15. Kitoh, K.; Nemoto, H.: 100 Wh large size Li-ion batteries and safety tests. J. Power. Sources 81–82, 887–890 (1999). https://doi.org/10.1016/S0378-7753(99)00125-1

    Article  Google Scholar 

  16. Pesaran, A.A.: Battery thermal models for hybrid vehicle simulations. J. Power. Sources 110(2), 377–382 (2002). https://doi.org/10.1016/S0378-7753(02)00200-8

    Article  ADS  CAS  Google Scholar 

  17. Ramadass, P.; Haran, B.; White, R.; Popov, B.N.: Capacity fade of Sony 18650 cells cycled at elevated temperatures. J. Power. Sources 112(2), 606–613 (2002). https://doi.org/10.1016/S0378-7753(02)00474-3

    Article  ADS  CAS  Google Scholar 

  18. Wang, M.; Teng, S.; Xi, H.; Li, Y.: Cooling performance optimization of air-cooled battery thermal management system. Appl. Therm. Eng. 195, 117242 (2021). https://doi.org/10.1016/j.applthermaleng.2021.117242

    Article  Google Scholar 

  19. Martellucci, L.; Krishna, K.K.: Analysis of air-cooling battery thermal management system for formula student car. J. Transport. Technol. 11(03), 436–454 (2021). https://doi.org/10.4236/jtts.2021.113029

    Article  Google Scholar 

  20. Saechan, P.; Dhuchakallaya, I.: Numerical investigation of air cooling system for a densely packed battery to enhance the cooling performance through cell arrangement strategy. Int. J. Energy Res. 46(14), 20670–20684 (2022). https://doi.org/10.1002/er.7571

    Article  Google Scholar 

  21. Yang, H.; Wang, Z.; Li, M.; Ren, F.; Feng, Y.: A manifold channel liquid cooling system with low-cost and high temperature uniformity for Lithium–ion battery pack thermal management. Thermal Sci. Eng. Progr. 41, 101857 (2023). https://doi.org/10.1016/j.tsep.2023.101857

    Article  CAS  Google Scholar 

  22. Guo, Y., et al.: Modeling and analysis of liquid-cooling thermal management of an in-house developed 100 kW/500 kWh energy storage container consisting of Lithium–ion batteries retired from electric vehicles. Appl. Therm. Eng. 232, 121111 (2023). https://doi.org/10.1016/j.applthermaleng.2023.121111

    Article  Google Scholar 

  23. Ding, Y.; Ji, H.; Wei, M.; Liu, R.: Effect of liquid cooling system structure on Lithium–ion battery pack temperature fields. Int. J. Heat Mass Transf. 183, 122178 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2021.122178

    Article  Google Scholar 

  24. Wang, C., et al.: Liquid cooling based on thermal silica plate for battery thermal management system. Int. J. Energy Res. 41(15), 2468–2479 (2017). https://doi.org/10.1002/er.3801

    Article  CAS  Google Scholar 

  25. Mei, N.; Xu, X.; Li, R.: Heat dissipation analysis on the liquid cooling system coupled with a flat heat pipe of a lithium–ion battery. ACS Omega 5(28), 17431–17441 (2020). https://doi.org/10.1021/acsomega.0c01858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gao, R.; Fan, Z.; Liu, S.: A gradient channel-based novel design of liquid-cooled battery thermal management system for thermal uniformity improvement. J. Energy Storage 48, 104014 (2022). https://doi.org/10.1016/j.est.2022.104014

    Article  Google Scholar 

  27. Sudhakaran, S.; Terese, M.; Mohan, Y.; Thampi, A.D.; Rani, S.: Influence of various parameters on the cooling performance of battery thermal management systems based on phase change materials. Appl. Therm. Eng. 222, 119936 (2023). https://doi.org/10.1016/j.applthermaleng.2022.119936

    Article  CAS  Google Scholar 

  28. Weng, J.; Ouyang, D.; Yang, X.; Chen, M.; Zhang, G.; Wang, J.: Experimental study on thermal behavior of PCM-module coupled with various cooling strategies under different temperatures and protocols. Appl. Therm. Eng. 197, 117376 (2021). https://doi.org/10.1016/j.applthermaleng.2021.117376

    Article  Google Scholar 

  29. Mousavi, S.; Siavashi, M.; Zadehkabir, A.: A new design for hybrid cooling of Li–ion battery pack utilizing PCM and mini channel cold plates. Appl. Therm. Eng. 197, 117398 (2021). https://doi.org/10.1016/j.applthermaleng.2021.117398

    Article  CAS  Google Scholar 

  30. Fan, Y., et al.: Novel concept design of low energy hybrid battery thermal management system using PCM and multistage Tesla valve liquid cooling. Appl. Therm. Eng. 220, 119680 (2023). https://doi.org/10.1016/j.applthermaleng.2022.119680

    Article  CAS  Google Scholar 

  31. Youssef, R.; Hosen, M.S.; He, J.; Mohammed, A.S.; Van Mierlo, J.; Berecibar, M.: Novel design optimization for passive cooling PCM assisted battery thermal management system in electric vehicles. Case Stud. Thermal Eng. 32, 101896 (2022). https://doi.org/10.1016/j.csite.2022.101896

    Article  Google Scholar 

  32. Pradeep, R.; Venugopal, T.: Investigations on melting and solidification of a battery cooling system using different phase change materials. Thermal Sci. 25(4), 2767–2780 (2021). https://doi.org/10.2298/TSCI200229220P

    Article  Google Scholar 

  33. Chen, D.; Jiang, J.; Kim, G.-H.; Yang, C.; Pesaran, A.: Comparison of different cooling methods for lithium ion battery cells. Appl. Therm. Eng. 94, 846–854 (2016). https://doi.org/10.1016/j.applthermaleng.2015.10.015

    Article  CAS  Google Scholar 

  34. Liu, R.; Chen, J.; Xun, J.; Jiao, K.; Du, Q.: Numerical investigation of thermal behaviors in Lithium–ion battery stack discharge. Appl. Energy 132, 288–297 (2014). https://doi.org/10.1016/j.apenergy.2014.07.024

    Article  ADS  Google Scholar 

  35. Qian, Z.; Li, Y.; Rao, Z.: Thermal performance of Lithium–ion battery thermal management system by using mini-channel cooling. Energy Convers. Manage. 126, 622–631 (2016). https://doi.org/10.1016/j.enconman.2016.08.063

    Article  CAS  Google Scholar 

  36. Angayarkanni, S.A.; Philip, J.: Review on thermal properties of nanofluids: recent developments. Adv. Coll. Interface. Sci. 225, 146–176 (2015). https://doi.org/10.1016/j.cis.2015.08.014

    Article  CAS  Google Scholar 

  37. Sarchami, A.; Najafi, M.; Imam, A.; Houshfar, E.: Experimental study of thermal management system for cylindrical Li–ion battery pack based on nanofluid cooling and copper sheath. Int. J. Therm. Sci. 171, 107244 (2022). https://doi.org/10.1016/j.ijthermalsci.2021.107244

    Article  CAS  Google Scholar 

  38. Liao, G.; Wang, W.; Zhang, F.; Jiaqiang, E.; Chen, J.; Leng, E.: Thermal performance of lithium–ion battery thermal management system based on nanofluid. Appl. Thermal Eng. 216, 118997 (2022). https://doi.org/10.1016/j.applthermaleng.2022.118997

    Article  CAS  Google Scholar 

  39. Wiriyasart, S.; Hommalee, C.; Sirikasemsuk, S.; Prurapark, R.; Naphon, P.: Thermal management system with nanofluids for electric vehicle battery cooling modules. Case Stud. Thermal Eng. 18, 100583 (2020). https://doi.org/10.1016/j.csite.2020.100583

    Article  Google Scholar 

  40. Jo, Y.K., et al.: Surface-independent antibacterial coating using silver nanoparticle-generating engineered mussel glue. ACS Appl. Mater. Interfaces 6(22), 20242–20253 (2014). https://doi.org/10.1021/am505784k

    Article  CAS  PubMed  Google Scholar 

  41. Guo, Z., et al.: Are silver nanoparticles always toxic in the presence of environmental anions? Chemosphere 171, 318–323 (2017). https://doi.org/10.1016/j.chemosphere.2016.12.077

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Rosa, L.R.; Rosa, R.D.; da Veiga, M.A.M.S.: Colloidal silver and silver nanoparticles bioaccessibility in drinking water filters. J. Environ. Chem. Eng. 4(3), 3451–3458 (2016). https://doi.org/10.1016/j.jece.2016.07.017

    Article  CAS  Google Scholar 

  43. Buszewski, B.; Rafiſska, K.; Pomastowski, P.; Walczak, J.; Rogowska, A.: Novel aspects of silver nanoparticles functionalization. Colloids Surf. A 506, 170–178 (2016). https://doi.org/10.1016/j.colsurfa.2016.05.058

    Article  CAS  Google Scholar 

  44. Das, S.; Bandyopadhyay, K.; Ghosh, M.M.: Effect of stabilizer concentration on the size of silver nanoparticles synthesized through chemical route. Inorg. Chem. Commun. 123, 108319 (2021). https://doi.org/10.1016/j.inoche.2020.108319

    Article  CAS  Google Scholar 

  45. Zeroual, S., et al.: Ethylene glycol based silver nanoparticles synthesized by polyol process: characterization and thermophysical profile. J. Mol. Liq. 310, 113229 (2020). https://doi.org/10.1016/j.molliq.2020.113229

    Article  CAS  Google Scholar 

  46. Brycki, B.; Szulc, A.; Babkova, M.: Synthesis of silver nanoparticles with Gemini surfactants as efficient capping and stabilizing agents. Appl. Sci. 11(1), 154 (2020). https://doi.org/10.3390/app11010154

    Article  CAS  Google Scholar 

  47. Godson, L.; Deepak, K.; Enoch, C.; Jefferson, B.; Raja, B.: Heat transfer characteristics of silver/water nanofluids in a shell and tube heat exchanger. Arch. Civ. Mech. Eng. 14(3), 489–496 (2014). https://doi.org/10.1016/j.acme.2013.08.002

    Article  Google Scholar 

  48. Chakraborty, S.; Mukherjee, J.; Manna, M.; Ghosh, P.; Das, S.; Denys, M.B.: Effect of Ag nanoparticle addition and ultrasonic treatment on a stable TiO2 nanofluid. Ultrason. Sonochem.. Sonochem. 19(5), 1044–1050 (2012). https://doi.org/10.1016/j.ultsonch.2012.01.016

    Article  CAS  Google Scholar 

  49. Fuskele, V.; Sarviya, R.M.: Recent developments in nanoparticles synthesis, preparation and stability of nanofluids. Mater. Today Proc. 4(2), 4049–4060 (2017). https://doi.org/10.1016/j.matpr.2017.02.307

    Article  Google Scholar 

  50. Uitz, M., et al.: Aging of Tesla’s 18650 lithium–ion cells: correlating solid-electrolyte-interphase evolution with fading in capacity and power. J. Electrochem. Soc. 164(14), A3503–A3510 (2017). https://doi.org/10.1149/2.0171714jes

    Article  CAS  Google Scholar 

  51. Walshe, J.; Amarandei, G.; Ahmed, H.; McCormack, S.; Doran, J.: Development of poly-vinyl alcohol stabilized silver nanofluids for solar thermal applications. Sol. Energy Mater. Sol. Cells 201, 110085 (2019). https://doi.org/10.1016/j.solmat.2019.110085

    Article  CAS  Google Scholar 

  52. Chamsa-ard, W.; Brundavanam, S.; Fung, C.; Fawcett, D.; Poinern, G.: Nanofluid types, their synthesis, properties and incorporation in direct solar thermal collectors: a review. Nanomaterials 7(6), 131 (2017). https://doi.org/10.3390/nano7060131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ilyas, S.U.; Pendyala, R.; Marneni, N.: Preparation, sedimentation, and agglomeration of nanofluids. Chem. Eng. Technol. 37(12), 2011–2021 (2014). https://doi.org/10.1002/ceat.201400268

    Article  CAS  Google Scholar 

  54. Esfahani, M.B.B., et al.: The effect of sedimentation phenomenon of the additives silver nano particles on water pool boiling heat transfer coefficient: a comprehensive experimental study. J. Mol. Liq. 345, 117891 (2022). https://doi.org/10.1016/j.molliq.2021.117891

    Article  CAS  Google Scholar 

  55. Parwin, S.; Parui, J.: Ag nanofluids synthesis in presence of citrate at different stirring rotation and their post reaction stability. J. Dispersion Sci. Technol. 42(12), 1799–1810 (2021). https://doi.org/10.1080/01932691.2020.1789469

    Article  CAS  Google Scholar 

  56. Iyahraja, S.; Rajadurai, J.S.: Study of thermal conductivity enhancement of aqueous suspensions containing silver nanoparticles. AIP Adv. 10(1063/1), 4919808 (2015)

    Google Scholar 

  57. Allouni, Z.E.; Cimpan, M.R.; Høl, P.J.; Skodvin, T.; Gjerdet, N.R.: Agglomeration and sedimentation of TiO2 nanoparticles in cell culture medium. Colloids Surf. B 68(1), 83–87 (2009). https://doi.org/10.1016/j.colsurfb.2008.09.014

    Article  CAS  Google Scholar 

  58. E, J., et al.: Effect analysis on heat dissipation performance enhancement of a Lithium–ion-battery pack with heat pipe for central and southern regions in China”. Energy 226, 120336 (2021). https://doi.org/10.1016/j.energy.2021.120336

    Article  Google Scholar 

  59. Zhao, C.; Cao, W.; Dong, T.; Jiang, F.: Thermal behavior study of discharging/charging cylindrical Lithium–ion battery module cooled by channeled liquid flow. Int. J. Heat Mass Transf. 120, 751–762 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.083

    Article  CAS  Google Scholar 

  60. Xu, H.; Zhang, X.; Xiang, G.; Li, H.: Optimization of liquid cooling and heat dissipation system of Lithium–ion battery packs of automobile. Case Stud. Thermal Eng. 26, 101012 (2021). https://doi.org/10.1016/j.csite.2021.101012

    Article  Google Scholar 

  61. Hussein, A.M.; Bakar, R.A.; Kadirgama, K.; Sharma, K.V.: Experimental measurements of nanofluids thermal properties. Int. J. Automot. Mech. Eng. 7, 850–863 (2013). https://doi.org/10.15282/ijame.7.2012.5.0070

    Article  CAS  Google Scholar 

  62. Nasir, F.M.; Abdullah, M.Z.; Majid, M.F.M.A.; Ismail, M.A.: Nanofluid-filled heat pipes in managing the temperature of EV Lithium–ion batteries. J. Phys. Conf. Ser. 1349(1), 012123 (2019). https://doi.org/10.1088/1742-6596/1349/1/012123

    Article  CAS  Google Scholar 

  63. Ying, Z.; He, B.; He, D.; Kuang, Y.; Ren, J.; Song, B.: Comparisons of single-phase and two-phase models for numerical predictions of Al2O3/water nanofluids convective heat transfer. Adv. Powder Technol. 31(7), 3050–3061 (2020). https://doi.org/10.1016/j.apt.2020.05.032

    Article  CAS  Google Scholar 

  64. An, K.; Barai, P.; Smith, K.; Mukherjee, P.P.: Probing the thermal implications in mechanical degradation of lithium–ion battery electrodes. J. Electrochem. Soc. 161(6), A1058–A1070 (2014). https://doi.org/10.1149/2.069406jes

    Article  CAS  Google Scholar 

  65. Ling, Z.; Wang, F.; Fang, X.; Gao, X.; Zhang, Z.: A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling. Appl. Energy 148, 403–409 (2015). https://doi.org/10.1016/j.apenergy.2015.03.080

    Article  ADS  CAS  Google Scholar 

  66. Xin, Q.; Yang, T.; Zhang, H.; Zeng, J.; Xiao, J.: Simulation and optimization of lithium–ion battery thermal management system integrating composite phase change material, flat heat pipe and liquid cooling. Batteries 9(6), 334 (2023). https://doi.org/10.3390/batteries9060334

    Article  CAS  Google Scholar 

  67. Luo, D.; Wu, H.; Cao, J.; Yan, Y.; Yang, X.; Cao, B.: Numerical investigation of a battery thermal management system integrated with vapor chamber and thermoelectric refrigeration. J. Clean. Prod. 434, 140089 (2024). https://doi.org/10.1016/j.jclepro.2023.140089

    Article  Google Scholar 

  68. Wang, Q., et al.: Experimental investigation on EV battery cooling and heating by heat pipes. Appl. Therm. Eng. 88, 54–60 (2015). https://doi.org/10.1016/j.applthermaleng.2014.09.083

    Article  Google Scholar 

  69. Guo, R.; Li, L.: Heat dissipation analysis and optimization of lithium-ion batteries with a novel parallel-spiral serpentine channel liquid cooling plate. Int. J. Heat Mass Transf. 189, 122706 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2022.122706

    Article  Google Scholar 

  70. Polvongsri, S.; Kiatsiriroat, T.: Performance analysis of flat-plate solar collector having silver nanofluid as a working fluid. Heat Transf. Eng.Transf Eng. 35(13), 1183–1191 (2014). https://doi.org/10.1080/01457632.2013.870003

    Article  ADS  CAS  Google Scholar 

  71. Nejad, M.B.; Mohammed, H.A.; Sadeghi, O.; Zubeer, S.A.: Influence of nanofluids on the efficiency of flat-plate solar collectors (FPSC). E3S Web Conf. 22, 00123 (2017). https://doi.org/10.1051/e3sconf/20172200123

    Article  CAS  Google Scholar 

  72. Pourhoseini, S.H.; Naghizadeh, N.; Hoseinzadeh, H.: Effect of silver-water nanofluid on heat transfer performance of a plate heat exchanger: an experimental and theoretical study. Powder Technol. 332, 279–286 (2018). https://doi.org/10.1016/j.powtec.2018.03.058

    Article  CAS  Google Scholar 

  73. Adebayo-Tayo, B.; Salaam, A.; Ajibade, A.: Green synthesis of silver nanoparticle using oscillatoria sp. extract, its antibacterial, antibiofilm potential and cytotoxicity activity. Heliyon 5(10), e02502 (2019). https://doi.org/10.1016/j.heliyon.2019.e02502

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ozsoy, A.; Corumlu, V.: Thermal performance of a thermosyphon heat pipe evacuated tube solar collector using silver-water nanofluid for commercial applications. Renew. Energy 122, 26–34 (2018). https://doi.org/10.1016/j.renene.2018.01.031

    Article  CAS  Google Scholar 

  75. Iyahraja, S.; Rajadurai, J.S.: Stability of aqueous nanofluids containing PVP-coated silver nanoparticles. Arab. J. Sci. Eng. 41(2), 653–660 (2016). https://doi.org/10.1007/s13369-015-1707-9

    Article  CAS  Google Scholar 

  76. Sarafraz, M.M.; Hormozi, F.: Intensification of forced convection heat transfer using biological nanofluid in a double-pipe heat exchanger. Exp. Thermal Fluid Sci. 66, 279–289 (2015). https://doi.org/10.1016/j.expthermflusci.2015.03.028

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors A.D. and Y.S. acknowledge the support from Universiti Brunei Darussalam through University Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

AD did investigation, methodology, conceptualization, software, writing—original draft; RD performed methodology, conceptualization, data curation, and validation; YS contributed to investigation and writing—review and editing; RKG was involved in writing—review and editing, conceptualization, supervision; MASA done writing—review and editing, visualization; VR and HY visualized the study; AKA did writing—review and editing, conceptualization, resources, supervision.

Corresponding authors

Correspondence to Ramesh Kumar Gubendiren or Abul K. Azad.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 613 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhanasekaran, A., Dhanasekaran, R., Subramanian, Y. et al. Silver Nanofluid-Based Thermal Management for Effective Cooling of Batteries in Electric Vehicle Systems. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08790-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-08790-4

Keywords

Navigation