Skip to main content
Log in

Two-Phase Numerical Simulation for the Heat and Mass Transfer Evaluation Across a Vertical Deformable Sheet with Significant Impact of Solar Radiation and Heat Source/Sink

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The growing need for industrial development, limited availability of non-renewable energy resources, minimizing energy consumption, and ecosystem concerns has prompted researchers to explore the practical applications of two-phase nanofluid materials processing and electromagnetic energy emitted via the sun. Therefore, using two-phase nanofluids in solar thermal technology systems can enhance system performance by improving heat absorption and transfer efficiency. Owing to its usage, this study examines the magnetized two-phase nanofluid flow on a two-dimensional laminar mixed convective boundary layer with the impact of multiple slips. The flow contains an electrically conducting non-Newtonian nanofluid over a deformable (stretching/shrinking) sheet with a solar radiation effect. Also, the study utilizes a nonlinear Roseland diffusion flux approximation to incorporate the solar radiation effect, which is valid for nanofluid media with high optical density. This work utilizes similarity variables to simplify the partial derivative model into ordinary differential equations. These equations are then solved using the wavelets and Chebyshev wavelets scheme with the help of MATHEMATICA 11.3 software. According to the findings, the nanoparticle volume fraction is increased for high electrical conductivity (M = 2) and decreased for the electrically non-conducting case (M = 0).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Abbreviations

\({\overline{U} }_{{\text{e}}}\) :

External velocity

\(\tau\) :

Nanoparticle heat capacity

\(k\) :

Thermal conductivity

\(\sigma\) :

\

Electric conductivity

\({\sigma }_{0}\) :

Electric conductivity

\({B}_{0}\) :

Constant magnetic field

\({k}_{{\text{p}}}\) :

Permeability

\({E}_{1}\) :

Solutal slip

\({\beta }_{0}\) :

Thermal expansion coefficient

\({\overline{u} }_{{\text{slip}}}\) :

Velocity slip

\({\text{Ec}}\) :

Eckert number

\({N}_{{\text{r}}}\) :

Buoyancy ratio

\(\xi\) :

Stretching or Shrinking sheet parameter

\(b\) :

Thermal slip parameter

\({\text{Tr}}\) :

Excess wall temperature

\({\text{Nt}}\) :

Thermophoresis parameter

\(a\) :

Velocity slip parameter

\(\xi >0\) :

Stretching sheet

\(\xi =0\) :

Static sheet

\({\alpha }^{*}\) :

Thermal diffusivity

\({\rho }_{f}\) :

Density

\({\rho }_{f\infty }\) :

Ambient fluid density

\({\vartheta }_{{\text{f}}}\) :

Kinematic Casson fluid

\(B\left(\overline{x }\right)\) :

Magnetic field

\({\rho }_{p}\) :

Density of nanoparticle

\(g\) :

Acceleration due to gravity

\({D}_{1}\) :

Thermal slip factor

\({D}_{{\text{B}}}\) :

Brownian diffusion

\({D}_{{\text{T}}}\) :

Thermophoresis diffusion

\({\text{Ra}}\) :

Rayleigh number

\({\text{Da}}\) :

Darcy number

\(c\) :

Mass slip parameter

\({\text{Pr}}\) :

Prandtl number

\({\text{Rd}}\) :

Thermal radiation

\({\text{Le}}\) :

Lewis number

\(\xi\) :

Shrinking sheet parameter

\(\xi <0\) :

Shrinking sheet

MBL:

Momentum boundary layer

TBL:

Thermal boundary layer

CBL:

Concentrations boundary layer

NFs:

Nanofluid

CF:

Casson fluid

NPs:

Nanoparticles

MHD:

Magnetohydrodynamics

MRI:

Magnetic resonance imaging

NNF:

Non-Newtonian fluid

References

  1. Chen, J.L.T.; Oumer, A.N.; Azizuddin, A.A.: A review on thermo-physical properties of bio, non-bio and hybrid nanofluids. J. Mech. Eng. Sci. 13(4), 5875–5904 (2019)

    Article  Google Scholar 

  2. Emerich, D.F.; Thanos, C.G.: The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis. Biomol. Eng. 23(4), 171–184 (2006)

    Article  Google Scholar 

  3. Hassan, M.R.; Hossain, M.M.; Begg, R.K.; Ramamohanarao, K.; Morsi, Y.: Breast-cancer identification using HMM-fuzzy approach. Comput. Biol. Med. 40(3), 240–251 (2010)

    Article  Google Scholar 

  4. Su, D.; Ma, R.; Zhu, L.: Numerical study of nanofluid infusion in deformable tissues for hyperthermia cancer treatments. Med. Biol. Eng. Comput. 49, 1233–1240 (2011)

    Article  Google Scholar 

  5. Morsi, Y.S.; Shi, P.; Li, Z.: Advancement of lung tissue engineering: an overview. Int. J. Biomed. Eng. Technol. 5(2–3), 195–210 (2011)

    Article  Google Scholar 

  6. Okafor, A.A.; Mgbemena, C.O.; Oreko, B.U.: Preparation, characterization, stability and thermophysical properties of bio, non-bio (metallic and non-metallic) and hybrids nanofluids: a review. J. Nanofluids 11(6), 803–818 (2022)

    Article  Google Scholar 

  7. Bég, O.A.; Tripathi, D.: Mathematica simulation of peristaltic pumping with double-diffusive convection in nanofluids: a bio-nano-engineering model. Proc. Inst. Mech. Eng. Part N. J. Nanoeng. Nanosyst. 225(3), 99–114 (2011)

    Google Scholar 

  8. Beg, O.A.; Rashidi, M.M.; Akbari, M.; Hosseini, A.: Comparative numerical study of single-phase and two-phase models for bio-nanofluid transport phenomena. J. Mech. Med. Biol. 14(01), 1450011 (2014)

    Article  Google Scholar 

  9. Hajizadeh, A.; Shah, N.A.; Zaman, F.D.; Animasaun, I.L.: Analysis of natural convection bionanofluid between two vertical parallel plates. Bionanoscience 9, 930–936 (2019)

    Article  Google Scholar 

  10. Shah, N.A., et al.: Natural convection of bio-nanofluid between two vertical parallel plates with damped shear and thermal flux. J. Mol. Liq. 296, 111575 (2019)

    Article  Google Scholar 

  11. Uddin, M.J.; Bég, O.A.; Amin, N.: Hydromagnetic transport phenomena from a stretching or shrinking nonlinear nanomaterial sheet with Navier slip and convective heating: a model for bio-nano-materials processing. J. Magn. Magn. Mater. 368, 252–261 (2014)

    Article  Google Scholar 

  12. Yang, D., et al.: Thermal transport of natural convection flow of second grade bio-nanofluid in a vertical channel. Case Stud. Therm. Eng. 28, 101377 (2021)

    Article  Google Scholar 

  13. Zapata, K.; Rodriguez, Y.; Lopera, S.H.; Cortes, F.B.; Franco, C.A.: Development of bio-nanofluids based on the effect of nanoparticles chemical nature and novel Solanum torvum extract for chemical enhanced oil recovery (CEOR) processes. Nanomaterials 12(18), 3214 (2022)

    Article  Google Scholar 

  14. Obalalu, A.; Salawu, S.; Olayemi, O.; Odetunde, C.; Akindele, A.: Computational study of bioconvection rheological nanofluid flow containing gyrotactic microorganisms: a model for bioengineering nanofluid fuel cells. Int. J. Model. Simul. (2023). https://doi.org/10.1080/02286203.2023.2204209

    Article  Google Scholar 

  15. Bristow, K.L.; Campbell, G.S.: On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agric. For. Meteorol. 31(2), 159–166 (1984)

    Article  Google Scholar 

  16. Rapp, D.: Assessing climate change: temperatures, solar radiation and heat balance. Springer (2014)

    Book  Google Scholar 

  17. Oyelakin, I.S.; Mondal, S.; Sibanda, P.: Unsteady Casson nanofluid flow over a stretching sheet with thermal radiation, convective and slip boundary conditions. Alexandria Eng. J. 55(2), 1025–1035 (2016)

    Article  Google Scholar 

  18. Oreyeni, T.; Akindele, A.; Obalalu, A.; Salawu, S.; Ramesh, D.: Thermal performance of radiative magnetohydrodynamic Oldroyd-B hybrid nanofluid with Cattaneo-Christov heat flux model: Solar-powered ship application. Numer. Heat Transf. Part A Appl. (2023). https://doi.org/10.1080/10407782.2023.2213837

    Article  Google Scholar 

  19. Oyelakin, I.S.; Mondal, S.; Sibanda, P.: Nonlinear radiation in bioconvective Casson nanofluid flow. Int. J. Appl. Comput. Math. 5(5), 124 (2019). https://doi.org/10.1007/s40819-019-0705-0

    Article  MathSciNet  Google Scholar 

  20. Abdal, S.; Siddique, I.; Eldin, S.M.; Bilal, M.; Hussain, S.: Significance of thermal radiation and bioconvection for Williamson nanofluid transportation owing to cone rotation. Sci. Rep. 12(1), 22646 (2022). https://doi.org/10.1038/s41598-022-27118-6

    Article  Google Scholar 

  21. Rana, P.; Dhanai, R.; Kumar, L.: Radiative nanofluid flow and heat transfer over a non-linear permeable sheet with slip conditions and variable magnetic field: dual solutions. Ain Shams Eng. J. 8(3), 341–352 (2017). https://doi.org/10.1016/j.asej.2015.08.016

    Article  Google Scholar 

  22. Zeeshan, A.; Arain, M.B.; Bhatti, M.M.; Alzahrani, F.; Bég, O.A.: Radiative bioconvection nanofluid squeezing flow between rotating circular plates: Semi-numerical study with the DTM-Padé approach. Mod. Phys. Lett. B 36(03), 2150552 (2022)

    Article  Google Scholar 

  23. Obalalu, A.M.; Salawu, S.O.; Asif Memon, M.; Olayemi, O.A.; Ali, M.R.; Sadat, R.; Odetunde, C.B.; Ajala, O.A.; Akindele, A.O.: Computational study of Cattaneo-Christov heat flux on cylindrical surfaces using CNT hybrid nanofluids: a solar-powered ship implementation. Case Stud. Therm. Eng. 45, 102959 (2023)

    Article  Google Scholar 

  24. Oni, M.O.: Combined effect of heat source, porosity and thermal radiation on mixed convection flow in a vertical annulus: An exact solution. Eng. Sci. Technol. Int. J. 20(2), 518–527 (2017)

    MathSciNet  Google Scholar 

  25. Oni, M.O.; Jha, B.K.: Heat generation/absorption effect on mixed convection flow in a vertical channel filled with a nanofluid: exact solution. J. Oil Gas Res. Rev. 3(1), 1–14 (2023)

    Google Scholar 

  26. Obalalu, A.M.; Salawu, S.O.; Olayemic, O.A.; Ajala, O.A.; Issa, K.: Analysis of hydromagnetic Williamson fluid flow over an inclined stretching sheet with hall current using Galerkin weighted Residual Method. Comput. Math. Appl. 146, 22–32 (2023)

    Article  MathSciNet  Google Scholar 

  27. Obalalu, A.M.; Ahmad, H.; Salawu, S.O.; Olayemi, O.A.; Odetunde, C.B.; Ajala, A.O.; Abdulraheem, A.: Improvement of mechanical energy using thermal efficiency of hybrid nanofluid on solar aircraft wings: an application of renewable, sustainable energy. Waves Random Compl. Media (2023). https://doi.org/10.1080/17455030.2023.2184642

    Article  Google Scholar 

  28. Ellis, J.S.; Thompson, M.: Slip and coupling phenomena at the liquid-solid interface. Phys. Chem. Chem. Phys. 6(21), 4928–4938 (2004)

    Article  Google Scholar 

  29. Obalalu, A.M.: Heat and mass transfer in an unsteady squeezed Casson fluid flow with novel thermophysical properties: analytical and numerical solution. Heat Transf. 50(8), 7988–8011 (2021)

    Article  Google Scholar 

  30. Maxwell, J.C.: VII. On stresses in rarified gases arising from inequalities of temperature. Philos. Trans. R. Soc. Lond. 170, 231–256 (1879)

    Google Scholar 

  31. Lauga, E.; Stone, H.A.: Effective slip in pressure-driven Stokes flow. J. Fluid Mech. 489, 55–77 (2003)

    Article  MathSciNet  Google Scholar 

  32. Vajravelu, K.; Sreenadh, S.; Saravana, R.: Combined influence of velocity slip, temperature and concentration jump conditions on MHD peristaltic transport of a Carreau fluid in a non-uniform channel. Appl. Math. Comput. 225, 656–676 (2013). https://doi.org/10.1016/j.amc.2013.10.014

    Article  MathSciNet  Google Scholar 

  33. Shen, B.; Zheng, L.; Zhang, C.; Zhang, X.: Bioconvection heat transfer of a nanofluid over a stretching sheet with velocity slip and temperature jump. Therm. Sci. 21(6), 2347–2356 (2017)

    Article  Google Scholar 

  34. Zhong, H.; He, Y.; Yang, E.; Bi, Y.; Yang, T.: Modeling of microflow during viscoelastic polymer flooding in heterogenous reservoirs of Daqing Oilfield. J. Petrol. Sci. Eng. 210, 110091 (2022)

    Article  Google Scholar 

  35. Oni, M.O.; Jha, B.K.: Analysis of transient buoyancy/electroosmotic driven flow in a vertical microannulus with velocity-slip and temperature-jump. Eng. Sci. Technol. (2022). https://doi.org/10.37256/est.3120221293

    Article  Google Scholar 

  36. Vinogradova, O.I.: Slippage of water over hydrophobic surfaces. Int. J. Miner. Process. 56(1–4), 31–60 (1999)

    Article  Google Scholar 

  37. Obalalu, A.M.; Memon, M.A.; Olayemi, O.A.; Olilima, J.; Fenta, A.: Enhancing heat transfer in solar-powered ships: a study on hybrid nanofluids with carbon nanotubes and their application in parabolic trough solar collectors with electromagnetic controls. Sci. Rep. 13(1), 9476 (2023)

    Article  Google Scholar 

  38. Olayemi, O.A.; Obalalu, A.M.; Odetunde, C.B.; Ajala, O.A.: Heat transfer enhancement of magnetized nanofluid flow due to a stretchable rotating disk with variable thermophysical properties effects. Eur. Phys. J. Plus. 137(3), 1–12 (2022)

    Article  Google Scholar 

  39. Chakrabarti, A.; Gupta, A.S.: Hydromagnetic flow and heat transfer over a stretching sheet. Q. Appl. Math. 37(1), 73–78 (1979)

    Article  Google Scholar 

  40. Mabood, F.; Khan, W.A.; Ismail, A.I.M.: MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet: a numerical study. J. Magn. Magn. Mater. 374, 569–576 (2015). https://doi.org/10.1016/j.jmmm.2014.09.013

    Article  Google Scholar 

  41. Abbas, Z., et al.: Mhd boundary layer flow and heat transfer of nanofluid over a vertical stretching sheet in the presence of a heat source. Sci. Inq. Rev. 3(4), 60–73 (2019)

    Article  Google Scholar 

  42. Obalalu, A.M.; Ajala, A.O.; Akindele, A.O.; Oladapo, O.A.; Akintayo, O.O.; Jimoh, O.M.: Computational study of magneto-convective non-Newtonian nanofluid slip flow over a stretching/shrinking sheet embedded in a porous medium. Comput. Math. with Appl. 119, 319–326 (2022)

    Article  MathSciNet  Google Scholar 

  43. Jawwad, A.K.A.; Jawad, M.; Nisar, K.S.; Saleem, M.; Hasanain, B.: Radiative transport of MHD stagnation point flow of chemically reacting Carreau nanofluid due to radially stretched sheet. Alex. Eng. J. 69, 699–714 (2023)

    Article  Google Scholar 

  44. Khan, N.; Hashmi, M.S.; Ghaffar, A.; Ullah, H.; Inc, M.: MHD chemical reactive flow with velocity slip temperature and concentration jump conditions. ZAMM J. Appl. Math. Mech. für Angew. Math. Und Mech. (2023). https://doi.org/10.1002/zamm.202200454

    Article  Google Scholar 

  45. Salawu, S.O.; Obalalu, A.M.; Shamshuddin, M.: Nonlinear solar thermal radiation efficiency and energy optimization for magnetized hybrid Prandtl-Eyring nanoliquid in aircraft. Arab. J. Sci. Eng. (2022). https://doi.org/10.1007/s13369-022-07080-1

    Article  Google Scholar 

  46. Salmi, A.; Madkhali, H.A.; Nawaz, M., et al.: Non-Fourier modeling and numerical simulations on heat and transfer in tangent hyperbolic nanofluid subjected to chemical reactions. Int. Commun. Heat Mass Transf. 134, 105996 (2022)

    Article  Google Scholar 

  47. Titiloye, E.O.; Gbadeyan, J.A.; Adeosun, A.T.: Heat and mass transfer of MHD dissipative Casson nanofluid flow over a stretching or shrinking sheet with multiple slip boundary conditions. Defect. Diffus. Forum 393, 103–120 (2019)

    Article  Google Scholar 

  48. Uddin, M.J.; Bég, O.A.; Ismail, I.M.: Symmetry group and numerical study of non-Newtonian nanofluid transport in a porous medium with multiple convective boundary and nonlinear radiation. Int. J. Numer. Methods Heat Fluid Flow. 26(5), 1526–1547 (2016)

    Article  MathSciNet  Google Scholar 

  49. Salawu, S.O.; Obalalu, A.M.; Fatunmbi, E.O.; Oderinu, R.A.: Thermal Prandtl-Eyring hybridized MoS2-SiO2/C3H8O2 and SiO2-C3H8O2 nanofluids for effective solar energy absorber and entropy optimization: A solar water pump implementation. J. Mol. Liq. 361, 119608 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the research unit at King Khalid University for funding this work through Project number 495 and the authors acknowledge the Research Center for Advanced Materials Science (RCAMS) at King Khalid University, Saudi Arabia for their valuable technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurang Zaib.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obalalu, A.M., Oni, M.O., Khan, U. et al. Two-Phase Numerical Simulation for the Heat and Mass Transfer Evaluation Across a Vertical Deformable Sheet with Significant Impact of Solar Radiation and Heat Source/Sink. Arab J Sci Eng (2023). https://doi.org/10.1007/s13369-023-08585-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-023-08585-z

Keywords

Navigation