Skip to main content
Log in

Modeling of MHD Casson Fluid Flow Across an Infinite Vertical Plate with Effects of Brownian, Thermophoresis, and Chemical Reactivity

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The current study presented here demonstrates the magnetohydrodynamics (MHD) Casson fluid flow within an infinite vertical plate with consequences of Brownian, thermophoresis, and chemically responsive systems. The governing equations are numerically computed by employing a sixth-order Runge–Kutta (R–K) algorithm, whereas Nachtsheim–Swigert (N–S) shooting iteration technique has been used as the main tool for calculating the current statement. The novelty of this study is dealing with the impression of Brownian and thermophoresis effect using shooting technique. The nonlinear governing problems have been transformed into coupled nonlinear ordinary differential equations using a suitable transformation. Numerical simulation is presented for the various interesting profiles. The velocity, temperature, and concentration profiles along with skin fraction, Nusselt, and Sherwood number take into account with the varying contributions of the parameters and deployed through graphs and tables. However, one of the current study’s key findings is that skin friction improves with expanding values of the thermal convective parameter while diminishing with increasing values of the Casson term, magnetic factor, and Eckert number. The current research has an enormous demand for Brownian and thermophoresis effects within the fields involving cosmology, power systems, ionized studies, and nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Ram Reddy, C.; Surender, O.; Rao, C.V.: Effects of Soret, Hall and Ion-slip on mixed convection in an electrically conducting Casson fluid in a vertical channel. Nonlinear Eng 5(3), 167–175 (2016)

    Google Scholar 

  2. Amanulla, C.H.; Nagendra, N.; Reddy, M.S.: Computational analysis of non-Newtonian boundary layer flow of nanofluid past a semi-infinite vertical plate with partial slip. Nonlinear Eng. 7(1), 29–43 (2018)

    Article  Google Scholar 

  3. Oke, A.S.; Mutuku, W.N.; Kimathi, M.; Animasaun, I.L.: Insight into the dynamics of non-Newtonian Casson fluid over a rotating non-uniform surface subject to Coriolis force. Nonlinear Eng. 9, 398–411 (2020)

    Article  Google Scholar 

  4. Jalili, P.; Azar, A.A.; Jalili, B.; Ganji, D.D.: Study of nonlinear radiative heat transfer with magnetic field for non-Newtonian Casson fluid flow in a porous medium. Results Phys. 5, 106371 (2023)

    Article  Google Scholar 

  5. Alzahrani, A.K.; Abbas, Z.; Ullah, M.Z.: Chemically reactive two-phase flow of viscous-Casson fluids in a rotating channel. Alex. Eng. J. 62, 403–413 (2023)

    Article  Google Scholar 

  6. Hafez, N.M.; Abd-Alla, A.M.; Metwaly, T.M.N.: Influences of rotation and mass and heat transfer on MHD peristaltic transport of Casson fluid through inclined plane. Alex. Eng. J. 68, 665–692 (2023)

    Article  Google Scholar 

  7. Swarnalathamma, B.V.; Babu, D.M.P.; Krishna, M.V.: Combined impacts of Radiation absorption and chemically reacting on MHD Free Convective Casson fluid flow past an infinite vertical inclined porous plate. J. Comput. Math. Data Sci. 5, 100069 (2022)

    Article  Google Scholar 

  8. Shoaib, M.; Kausar, M.; Nisar, K.S.; Raja, M.A.Z.; Ahmed Morsy, A.: Impact of thermal energy on MHD Casson fluid through a Forchheimer porous medium with inclined non-linear surface: A soft computing approach. Alex. Eng. J. 61(12), 12211–12228 (2022)

    Article  Google Scholar 

  9. Afikuzzaman, M.; Ferdows, M.; Quadir, R.A.; Alam, M.M.: MHD Viscous incompressible Casson fluid flow with hall current. J. Adv. Res. Fluid Mech. Thermal Sci. 60(2), 270–282 (2019)

    Google Scholar 

  10. Afikuzzaman, M.; Alam, M.M.: MHD casson fluid flow through a parallel plate. Sci. Technol. Asia 21(1), 59–70 (2016)

    Google Scholar 

  11. Patel, H.R.: Effects of cross diffusion and heat generation on mixed convective MHD flow of Casson fluid through porous medium with non-linear thermal radiation. Heliyon 5(4), e01555 (2019)

    Article  Google Scholar 

  12. Kumar, K.G.; Archana, M.; Gireesha, B.J.; Krishanamurthy, M.R.; Rudraswamy, N.G.: Cross diffusion effect on MHD mixed convection flow of nonlinear radiative heat and mass transfer of Casson fluid over a vertical plate. Results Phys 8, 694–701 (2018)

    Article  Google Scholar 

  13. Asogwa, K.K.; Ibe, A.A.: A Study of MHD Casson fluid flow over a permeable stretching sheet with heat and mass transfer. J. Eng. Res. Rep. 16(2), 10–25 (2020)

    Google Scholar 

  14. Sohail, M.; Shah, Z.; Tassaddiq, A.; Kumam, P.; Roy, P.: Entropy generation in MHD Casson fluid flow with variable heat conductance and thermal conductivity over non-linear bi-directional stretching surface. Sci. Rep. 10, 1 (2020)

    Article  Google Scholar 

  15. Prameela, M., Gangadhar, K., Reddy, G. J.: MHD free convective non-Newtonian Casson fluid flow over an oscillating vertical plate. Partial Differ. Equ. Appl. Math. 5 (2022)

  16. Hussain, M.; Ghaffar, A.; Ali, A.; Shahzad, A.; Nisar, K.S.; Alharthi, M.R.; Jamshed, W.: MHD thermal boundary layer flow of a Casson fluid over a penetrable stretching wedge in the existence of nonlinear radiation and convective boundary condition. Alex. Eng. J. 60, 5473–5483 (2021)

    Article  Google Scholar 

  17. Afraz, M.; Rashid, M.; Hasan, S.; Amjad, A.P.; Raizah, Z.A.; Hany, A.H.; Reddy, D.S.K.; Hafeez, M.B.: Heat and mass transfer characteristics in MHD Casson fluid flow over a cylinder in a wavy channel: higher-order FEM computations. Case Stud. Thermal Eng. 42, 102730 (2023)

    Article  Google Scholar 

  18. Sambaran, P.: Casson fluid flow and heat transfer past an exponentially porous stretching surface in presence of thermal radiation. Ain Shams Eng. J. 5(1), 205–212 (2022)

    Google Scholar 

  19. Afikuzzaman, M.; Ferdows, M.; Alam, M.M.: Unsteady MHD casson fluid flow through a parallel plate with hall current. Procedia Eng. 105, 287–293 (2015)

    Article  Google Scholar 

  20. Wahiduzzaman, M.; Islam, M.T.; Sultana, P.; Afikuzzaman, M.: MHD couette flow of a Casson fluid between parallel porous plates. Progress Nonlinear Dyn. Chaos 2(2), 51–60 (2014)

    Google Scholar 

  21. Nandhini, C.A.; Jothimani, S.; Chamkha, A.J.: Combined effect of radiation absorption and exponential parameter on chemically reactive Casson fluid over an exponentially stretching sheet. Partial Differ. Equ. i Appl. Math. 8, 100534 (2023)

    Article  Google Scholar 

  22. Asogwa, K.K.; Goud, B.S.; Reddy, Y.D.; Ibe, A.A.: Suction effect on the dynamics of EMHD casson nanofluid over an induced stagnation point flow of stretchable electromagnetic plate with radiation and chemical reaction. Results Eng. 15, 100518 (2022)

    Article  Google Scholar 

  23. Krishna, M.V.: Chemical reaction, heat absorption and Newtonian heating on MHD free convective Casson hybrid nanofluids past an infinite oscillating vertical porous plate. Int. Commun. Heat Mass Transfer 138, 106327 (2022)

    Article  Google Scholar 

  24. Yousef, N.S.; Megahed, A.M.; Ghoneim, N.I.; Elsafi, M.; Fares, E.: Chemical reaction impact on MHD dissipative Casson-Williamson nanofluid flow over a slippery stretching sheet through porous medium. Alex. Eng. J. 61(12), 10161–10170 (2022)

    Article  Google Scholar 

  25. Biswas, R., Falodun, B.O., Islam, N., Ahmmed, S.F., Mishra, S.R., Afikuzzaman, M.: Computational modeling of Prandtl‐nanofluid flow using exponentially vertical surface in terms of chemical reaction. Eng. Rep. e12747 (2023).

  26. Sayeed, M.A.; Podder, A.; Mishra, S.R.; Afikuzzaman, M.; Alam, M.M.: Computational modeling of unsteady MHD nanofluid over a cylinder using gyrotactic microorganisms. J. Therm. Anal. Calorim. 148(18), 1–16 (2023)

    Google Scholar 

  27. Biswas, R.; Hossain, M.S.; Islam, R.; Ahmmed, S.F.; Mishra, S.R.; Afikuzzaman, M.: Computational treatment of MHD Maxwell nanofluid flow across a stretching sheet considering higher-order chemical reaction and thermal radiation. J. Comput. Math. Data Sci. 4, 100048 (2022)

    Article  Google Scholar 

  28. Paul, D.; Mandal, G.: Magnetohydrodynamic nonlinear thermal radiative heat transfer of nanofluids over a flat plate in a porous medium in existence of variable thermal conductivity and chemical reaction. Int. J. Ambient Energy 42(10), 1167–1177 (2021)

    Article  Google Scholar 

  29. Raju, S.; R.: Unsteady MHD boundary layer flow of casson fluid over an inclined surface embedded in a porous medium with thermal radiation and chemical reaction. J. Nanofluids 7(4), 694–703 (2018)

    Article  Google Scholar 

  30. Reddy, P.S.; Chamkha, A.J.: Soret and Dufour effects on MHD convective flow of Al2O3 – water and TiO2- water nanofluids past a stretching sheet in porous media with heat generation/absorption. Adv. Powder Technol. 27, 1207–1218 (2016)

    Article  Google Scholar 

  31. Kataria, H.R.; Patel, H.R.: Radiation and chemical reaction effects on MHD Casson fluid flow past an oscillating vertical plate embedded in porous medium. Alex. Eng. J. 55, 583–595 (2016)

    Article  Google Scholar 

  32. Tripathy, R.S.; Dash, G.C.; Mishra, S.R.; Baag, S.: Chemical reaction effect on MHD free convective surface over a moving vertical plate through porous medium. Alex. Eng. J. 54, 673–679 (2015)

    Article  Google Scholar 

  33. Srikantha, G.V.P.N.; Srinivasa, D.G.; Babub, B.S.: Characterization of chemical reaction on heat transfer through the nano fluid. Procedia Mater. Sci. 10, 10–18 (2015)

    Article  Google Scholar 

  34. Samuel, D.J.: Chemical reaction and melting heat effects on MHD free convective radiative fluid flow past a continuous moving plate in the presence of thermo-physical parameters. Trans. Tech. Publ. 384, 80–98 (2018)

    Google Scholar 

  35. Awasthi, B.: Effects of heat and mass flux on MHD free convection flow through a porous medium in presence of radiation and chemical reaction. J. Ultra Scient. Phys. Sci. 30(1), 20–31 (2018)

    Google Scholar 

  36. Shateyi, S.; Marewo, G.T.: Numerical solution of mixed convection flow of an MHD Jeffery fluid over an exponentially stretching sheet in the presence of thermal radiation and chemical reaction. Open Phys. 16(1), 249–259 (2018)

    Article  Google Scholar 

  37. Megahed, A.A.; Hallool, A.A.; Mky, H.A.E.: Numerical solution of thermal radiation and joule-heating effects on an unsteady MHD with heat and mass transfer with chemical reaction. Int. J. Adv. Res. Sci. Eng. Technol. 5, 2 (2018)

    Google Scholar 

  38. Reza-E-Rabbi, S., Khan, M. S., Arifuzzaman, S. M., Islam, S., Biswas, P., Rana, B. M. J., Mamun, A. A., Hayat, T., Ahmmed, S. F.: Numerical simulation of a non-linear nanofluidic model to characterise the MHD chemically reactive flow past an inclined stretching surface. Partial Differ. Equ. Appl. Math. 5 (2022).

  39. Benharkat, Z.: Rotating convective MHD flow over a vertical moving plate in the presence of heat source, radiation, chemical reaction and Hall effects. Energy Thermofluids Eng. 2(1), 11–19 (2022)

    Article  Google Scholar 

  40. Haddad, Z.; Nada, E.A.; Oztop, H.F.; Mataoui, A.: Natural Convection in nanofluids: are the thermophoresis and Brownian motion effects significant in nanofluid heat transfer enhancement. Int. J. Therm. Sci. 57, 152–162 (2012)

    Article  Google Scholar 

  41. Malvandi, A.; Heysiqattalab, S.; Ganji, D.D.: Thermophoresis and Brownian motion effects on heat transfer enhancement at film boiling of nanofluids over a vertical cylinder. J. Mol. Liq. 216, 503–509 (2016)

    Article  Google Scholar 

  42. Sulochana, C.; Ashwinkumar, G.P.; Sandeep, N.: Transpiration effect on stagnation-point flow of a Carreaunanofluid in the presence of thermophoresis and Brownian motion. Alex. Eng. J. 55(2), 1151–1157 (2016)

    Article  Google Scholar 

  43. Makinde, O.D.; Animasaun, I.L.: Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid revolution. J. Mol. Liq. 221, 733–743 (2016)

    Article  Google Scholar 

  44. Mittal, A.S.; Patel, H.R.: Influence of thermophoresis and Brownian motion on mixed convection two dimensional MHD Casson fluid flow with non-linear radiation and heat generation. J. Phys. A 537, 122710 (2016)

    MathSciNet  Google Scholar 

  45. Anantha, K.K.; Sugunamma, V.; Sandeepand, N.; Reddy, J.V.R.: Impact of Brownian motion and thermophoresis on bioconvective flow of nanoliquids past a variable thickness surface with slip effects. Multidiscip. Model. Mater. Struct. 15, 103–132 (2019)

    Article  Google Scholar 

  46. Reddy, J.V.R.; Sugunamma, V.; Sandeep, N.: Thermophoresis and Brownian motion effects on unsteady MHD nanofluid flow over a slendering stretching surface with slip effects. Alex. Eng. J. 57(4), 2465–2473 (2018)

    Article  Google Scholar 

  47. Shah, Z.; Gul, T.; Islam, S.; Khan, M.A.; Bonyah, E.; Hussain, F.; Mukhtar, S.; Ullah, M.: Three-dimensional third grade nanofluid flow in a rotating system between parallel plates with Brownian motion and thermophoresis effects. Results Phys. 10, 36–45 (2018)

    Article  Google Scholar 

  48. Shateyi, S.: A new numerical approach to MHD flow of a Maxwell fluid past a vertical stretching sheet in the presence of thermophoresis and chemical reaction. Bound. Value Probl. 1, 196 (2013)

    Article  MathSciNet  Google Scholar 

  49. Manjula, V.; Sekhar, K.V.C.: Analysis of heat and mass transfer on steady MHD Casson fluid flow past an inclined porous stretching sheet with viscous dissipation and thermal radiation. Int. J. Mech. Prod. Eng. Res. Dev. 10(3), 281–292 (2020)

    Google Scholar 

  50. Biswas, R.; Ahmmed, S.F.: Effects of hall current and chemical reaction on magnetohydrodynamics unsteady heat and mass transfer of Casson nanofluid flow through a vertical plate. J. Heat Transfer 140(9), 092402 (2018)

    Article  Google Scholar 

  51. Turkyilmazoglu, M.: Radially expanding/contracting and rotating sphere with suction. Int. J. Numer. Meth. Heat Fluid Flow 32(11), 3439–3451 (2022)

    Article  Google Scholar 

  52. Turkyilmazoglu, M.: Wall stretching in magnetohydrodynamics rotating flows in inertial and rotating frames. J. Thermophys. Heat Transfer 25(4), 606–613 (2013)

    Article  Google Scholar 

  53. Turkyilmazoglu, M.: Equivalence of ratio and residual approaches in the homotopy analysis method and some applications in nonlinear science and engineering. Comput. Model. Eng. Sci. 120(1), 63–81 (2019)

    Google Scholar 

  54. Turkyilmazoglu, M.: Effective computation of solutions for nonlinear heat transfer problems in fins. J. Heat Transfer 136(9), 091901 (2014)

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

MA and SFA proposed the model, started the work, and developed the scheme. The methodology was carried out, and the conceptual framework of the paper was examined by MRI, SFA, RB, and MH. MRI played a critical role in conceptualizing the study, carrying out the experiments, and writing the report. MA dealt with the whole study procedure, data analysis, and paper editing as a corresponding author.

Corresponding author

Correspondence to Mohammad Afikuzzaman.

Ethics declarations

Conflict of Interest

As far as the author understands, there are no known contradictory financial or interpersonal relationships with the current work.

Appendix

Appendix

When we differentiate E with regard to \({g}_{1}, {g}_{2}\) and \({g}_{3}\), we get

$$\delta_{1} \frac{{\partial \delta_{1} }}{{\partial g_{1} }} + \delta_{2} \frac{{\partial \delta_{2} }}{{\partial g_{1} }} + \delta_{3} \frac{{\partial \delta_{3} }}{{\partial g_{1} }} + \delta_{4} \frac{{\partial \delta_{4} }}{{\partial g_{1} }} + \delta_{5} \frac{{\partial \delta_{5} }}{{\partial g_{1} }} + \delta_{6} \frac{{\partial \delta_{6} }}{{\partial g_{1} }} = 0\quad ({\text{A)}}$$
$$\delta_{1} \frac{{\partial \delta_{1} }}{{\partial g_{2} }} + \delta_{2} \frac{{\partial \delta_{2} }}{{\partial g_{2} }} + \delta_{3} \frac{{\partial \delta_{3} }}{{\partial g_{2} }} + \delta_{4} \frac{{\partial \delta_{4} }}{{\partial g_{2} }} + \delta_{5} \frac{{\partial \delta_{5} }}{{\partial g_{2} }} + \delta_{6} \frac{{\partial \delta_{6} }}{{\partial g_{2} }} = 0\quad ({\text{B}})$$
$$\delta_{1} \frac{{\partial \delta_{1} }}{{\partial g_{3} }} + \delta_{2} \frac{{\partial \delta_{2} }}{{\partial g_{3} }} + \delta_{3} \frac{{\partial \delta_{3} }}{{\partial g_{3} }} + \delta_{4} \frac{{\partial \delta_{4} }}{{\partial g_{3} }} + \delta_{5} \frac{{\partial \delta_{5} }}{{\partial g_{3} }} + \delta_{6} \frac{{\partial \delta_{6} }}{{\partial g_{3} }} = 0\quad ({\text{C}})$$

By combining Eqs. (21) to (26), and (A), the following equation was created:

$$\left[ {\left( {\frac{{\partial f^{\prime}}}{{\partial g_{1} }}} \right)^{2} + \left( {\frac{\partial \theta }{{\partial g_{1} }}} \right)^{2} + \left( {\frac{\partial \varphi }{{\partial g_{1} }}} \right)^{2} + \left( {\frac{{\partial f^{\prime\prime}}}{{\partial g_{1} }}} \right)^{2} + \left( {\frac{{\partial \theta^{\prime}}}{{\partial g_{1} }}} \right)^{2} + \left( {\frac{{\partial \varphi^{\prime}}}{{\partial g_{1} }}} \right)^{2} } \right]\Delta g_{1} + \left( {\frac{{\partial f^{\prime}}}{{\partial g_{2} }}\frac{{\partial f^{\prime}}}{{\partial g_{1} }} + \frac{\partial \theta }{{\partial g_{2} }}\frac{\partial \theta }{{\partial g_{1} }} + \frac{\partial \varphi }{{\partial g_{2} }}\frac{\partial \varphi }{{\partial g_{1} }} + \frac{{\partial f^{\prime\prime}}}{{\partial g_{2} }}\frac{{\partial f^{\prime\prime}}}{{\partial g_{1} }} + \frac{{\partial \theta^{\prime}}}{{\partial g_{2} }}\frac{{\partial \theta^{\prime}}}{{\partial g_{1} }} + \frac{{\partial \varphi^{\prime}}}{{\partial g_{2} }}\frac{{\partial \varphi^{\prime}}}{{\partial g_{1} }}} \right)\Delta g_{2} + \left( {\frac{{\partial f^{\prime}}}{{\partial g_{3} }}\frac{{\partial f^{\prime}}}{{\partial g_{1} }} + \frac{\partial \theta }{{\partial g_{3} }}\frac{\partial \theta }{{\partial g_{1} }} + \frac{\partial \varphi }{{\partial g_{3} }}\frac{\partial \varphi }{{\partial g_{1} }} + \frac{{\partial f^{\prime\prime}}}{{\partial g_{3} }}\frac{{\partial f^{\prime\prime}}}{{\partial g_{1} }} + \frac{{\partial \theta^{\prime}}}{{\partial g_{3} }}\frac{{\partial \theta^{\prime}}}{{\partial g_{1} }} + \frac{{\partial \varphi^{\prime}}}{{\partial g_{3} }}\frac{{\partial \varphi^{\prime}}}{{\partial g_{1} }}} \right)\Delta g_{3} = - \left[ {\frac{{\partial f^{\prime}}}{{\partial g_{1} }}f^{\prime}_{c} + \frac{\partial \theta }{{\partial g_{1} }}\theta_{c} + \frac{\partial \varphi }{{\partial g_{1} }}\varphi_{c} + \frac{{\partial f^{\prime\prime}}}{{\partial g_{1} }}f^{\prime\prime}_{c} + \frac{{\partial \theta^{\prime}}}{{\partial g_{1} }}\theta^{\prime}_{c} + \frac{{\partial \varphi^{\prime}}}{{\partial g_{1} }}\varphi^{\prime}_{c} } \right] \quad ({\text{D}})$$

Again, implementing Eqs. (21) to (26) in equations (B), the gained equation is as follows:

$$\left[ {\left( {\frac{{\partial f^{\prime}}}{{\partial g_{2} }}} \right)^{2} + \left( {\frac{\partial \theta }{{\partial g_{2} }}} \right)^{2} + \left( {\frac{\partial \varphi }{{\partial g_{2} }}} \right)^{2} + \left( {\frac{{\partial f^{\prime\prime}}}{{\partial g_{2} }}} \right)^{2} + \left( {\frac{{\partial \theta^{\prime}}}{{\partial g_{2} }}} \right)^{2} + \left( {\frac{{\partial \varphi^{\prime}}}{{\partial g_{2} }}} \right)^{2} } \right]\Delta g_{2} + \left( {\frac{{\partial f^{\prime}}}{{\partial g_{2} }}\frac{{\partial f^{\prime}}}{{\partial g_{1} }} + \frac{\partial \theta }{{\partial g_{2} }}\frac{\partial \theta }{{\partial g_{1} }} + \frac{\partial \varphi }{{\partial g_{2} }}\frac{\partial \varphi }{{\partial g_{1} }} + \frac{{\partial f^{\prime\prime}}}{{\partial g_{1} }}\frac{{\partial f^{\prime\prime}}}{{\partial g_{2} }} + \frac{{\partial \theta^{\prime}}}{{\partial g_{1} }}\frac{{\partial \theta^{\prime}}}{{\partial g_{2} }} + \frac{{\partial \varphi^{\prime}}}{{\partial g_{1} }}\frac{{\partial \varphi^{\prime}}}{{\partial g_{2} }}} \right)\Delta g_{1} + \left( {\frac{{\partial f^{\prime}}}{{\partial g_{3} }}\frac{{\partial f^{\prime}}}{{\partial g_{2} }} + \frac{\partial \theta }{{\partial g_{3} }}\frac{\partial \theta }{{\partial g_{2} }} + \frac{\partial \varphi }{{\partial g_{3} }}\frac{\partial \varphi }{{\partial g_{2} }} + \frac{{\partial f^{\prime\prime}}}{{\partial g_{2} }}\frac{{\partial f^{\prime\prime}}}{{\partial g_{3} }} + \frac{{\partial \theta^{\prime}}}{{\partial g_{2} }}\frac{{\partial \theta^{\prime}}}{{\partial g_{3} }} + \frac{{\partial \varphi^{\prime}}}{{\partial g_{2} }}\frac{{\partial \varphi^{\prime}}}{{\partial g_{3} }}} \right)\Delta g_{3} = - \left[ {\frac{{\partial f^{\prime}}}{{\partial g_{2} }}f^{\prime}_{c} + \frac{\partial \theta }{{\partial g_{2} }}\theta_{c} + \frac{\partial \varphi }{{\partial g_{2} }}\varphi_{c} + f^{\prime\prime}_{c} \frac{{\partial f^{\prime\prime}}}{{\partial g_{2} }} + \theta^{\prime}_{c} \frac{{\partial \theta^{\prime}}}{{\partial g_{2} }} + \varphi^{\prime}_{c} \frac{{\partial \varphi^{\prime}}}{{\partial g_{2} }}} \right] \quad ({\text{E}})$$

Similarly, employing Eqs. (21) to (26) in equations (C), the collected equation is as follows:

$$\left[ {\left( {\frac{{\partial f^{\prime}}}{{\partial g_{3} }}} \right)^{2} + \left( {\frac{\partial \theta }{{\partial g_{3} }}} \right)^{2} + \left( {\frac{\partial \varphi }{{\partial g_{3} }}} \right)^{2} + \left( {\frac{{\partial f^{\prime\prime}}}{{\partial g_{3} }}} \right)^{2} + \left( {\frac{{\partial \theta^{\prime}}}{{\partial g_{3} }}} \right)^{2} + \left( {\frac{{\partial \varphi^{\prime}}}{{\partial g_{3} }}} \right)^{2} } \right]\Delta g_{3} + \left( {\frac{{\partial f^{\prime}}}{{\partial g_{2} }}\frac{{\partial f^{\prime}}}{{\partial g_{3} }} + \frac{\partial \theta }{{\partial g_{2} }}\frac{\partial \theta }{{\partial g_{3} }} + \frac{\partial \varphi }{{\partial g_{2} }}\frac{\partial \varphi }{{\partial g_{3} }} + \frac{{\partial f^{\prime\prime}}}{{\partial g_{3} }}\frac{{\partial f^{\prime\prime}}}{{\partial g_{2} }} + \frac{{\partial \theta^{\prime}}}{{\partial g_{3} }}\frac{{\partial \theta^{\prime}}}{{\partial g_{2} }} + \frac{{\partial \varphi^{\prime}}}{{\partial g_{3} }}\frac{{\partial \varphi^{\prime}}}{{\partial g_{2} }}} \right)\Delta g_{3} + \left( {\frac{{\partial f^{\prime}}}{{\partial g_{3} }}\frac{{\partial f^{\prime}}}{{\partial g_{1} }} + \frac{\partial \theta }{{\partial g_{3} }}\frac{\partial \theta }{{\partial g_{1} }} + \frac{\partial \varphi }{{\partial g_{3} }}\frac{\partial \varphi }{{\partial g_{1} }} + \frac{{\partial f^{\prime\prime}}}{{\partial g_{1} }}\frac{{\partial f^{\prime\prime}}}{{\partial g_{3} }} + \frac{{\partial \theta^{\prime}}}{{\partial g_{1} }}\frac{{\partial \theta^{\prime}}}{{\partial g_{3} }} + \frac{{\partial \varphi^{\prime}}}{{\partial g_{1} }}\frac{{\partial \varphi^{\prime}}}{{\partial g_{3} }}} \right)\Delta g_{1} = - \left[ {f^{\prime}_{c} \frac{{\partial f^{\prime}}}{{\partial g_{3} }} + \theta_{c} \frac{\partial \theta }{{\partial g_{3} }} + \varphi_{c} \frac{\partial \varphi }{{\partial g_{3} }} + \frac{{\partial f^{\prime\prime}}}{{\partial g_{3} }}f^{\prime\prime}_{c} + \frac{{\partial \theta^{\prime}}}{{\partial g_{3} }}\theta^{\prime}_{c} + \frac{{\partial \varphi^{\prime}}}{{\partial g_{3} }}\varphi^{\prime}_{c} } \right]\quad ({\text{F}})$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M., Biswas, R., Hasan, M. et al. Modeling of MHD Casson Fluid Flow Across an Infinite Vertical Plate with Effects of Brownian, Thermophoresis, and Chemical Reactivity. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-023-08579-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-023-08579-x

Keywords

Navigation