Skip to main content
Log in

Graphene Nanoplatelet Surface Modification for Rheological Properties Enhancement in Drilling Fluid Operations: A Review

  • Review Article-Petroleum Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Drilling fluids are crucial for the safe and effective extraction of hydrocarbons from deep petroleum reserves. Lubricating, suspending, and conveying drilled cuttings to the surface are some of the functions of drilling fluids. Their performance depends on lubricity, fluid loss (FL) control, and rheology. Nanoparticles (NPs) have emerged in the oil and gas industry as an efficient fluid additive to modify and stabilize the properties of drilling fluids. NPs are thermally, chemically, and physically stable in drilling fluids; however, field data show they are inefficient at reducing drill string wear. Graphene nanoplatelets (GNPs) are now a useful drilling fluid agent because of their small particles with high specific surface area, good dispersion, high thermal and electrical stability, and their ability to lower stress and wear on the drill string. Thus, this study examined GNPs in drilling fluids, including surface modification methods and their effects on rheology, FL management, and lubricity. The unique properties of GNPs that make them a potential game-changer in drilling fluid are highlighted. The techniques used to modify GNP surfaces to improve drilling fluid compatibility, stability, and dispersion were also addressed. The broad study of laboratory GNP-modified drilling fluids is the central focus of this review. A scrutiny of the mechanisms by which GNPs influence the rheological behavior of drilling fluids and their impact on drilling efficiency and wellbore stability was also highlighted. Beyond laboratory tests, GNP’s real-world applications and commercialization possibilities were examined, taking economic and environmental considerations into account. Comparative examination of methods and results helps optimize GNP-enhanced drilling fluids. Small concentrations of GNPs (0.1–2.5 g) increased the base fluid lubricity and rheology. They also reduced the FL by 40–89%. Due to hydroxyl groups on clay surfaces, GNP has a strong affinity for organophilic clays. The challenges and limitations of GNP-modified drilling fluids were highlighted, along with future research directions. Finally, using GNPs as a fluid modification agent may improve drilling fluid lubricity, FL control, and rheology. These attributes will improve oil and gas drilling safety and efficiency. This review consolidates information and lays the groundwork for this growing field's study and innovation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

API:

American petroleum institute

APTS:

3-Aminopropyl triethoxysilane

CNFs:

Cellulose nanofibers

CNTs:

Carbon nanotubes

CoF:

Coefficient of friction

CTAB:

Cetyl triammonium bromide

CVD:

Chemical vapor deposition

FL:

Fluid loss

FTIR:

Fourier transform infrared spectroscopy

GNPs:

Graphene nanoplatelets

GS:

Gel strength

HOPG:

Highly oriented pyrolytic graphite

HPHT:

High pressure and high temperature

KOH:

Potassium hydroxide

LPLT:

Low pressure and low temperature

LPE:

Liquid-phase exfoliation

MGNF:

Multilayered graphene nanoflakes

MWCNTs:

Multi-walled carbon nanotubes

MW-PECVD:

Microwave plasma-enhanced chemical vapor deposition

NDG:

Nitrogen-doped graphene

N2O4 :

Dinitrogen tetroxide

NPs:

Nanoparticles

NS:

Nanosilica

OBM:

Oil-based muds

°C:

Degree celsius

°:

Degrees

PEG:

Polyethylene glycol

PEI:

Polyethylenimine

pH:

Hydrogen potential

PECVD:

Plasma-enhanced chemical vapor deposition

PFLG:

Planar few layer graphene

PV:

Plastic viscosity

SDBS:

Sodium dodecyl benzene sulfate

SDS:

Sodium dodecyl sulfate

TEM:

Transmission electron microscopy

WBM:

Water-based muds

YP:

Yield point

ZP:

Zeta potential

References

  1. Oseh, J.O.; Norddin, M.M.; Ismail, I.; Gbadamosi, A.O.; Agi, A.; Mohammed, H.N.: A novel approach to enhance rheological and filtration properties of water–based mud using polypropylene–silica nanocomposite. J. Pet. Sci. Eng. 181, 106264 (2019)

    Article  Google Scholar 

  2. Gbadamosi, A.O.; Junin, R.; Abdalla, Y.; Agi, A.; Oseh, J.O.: Experimental investigation of the effects of silica nanoparticle on hole cleaning efficiency of water-based drilling mud. J. Pet. Sci. Eng. 172, 1226–1234 (2019). https://doi.org/10.1016/j.petrol.2018.09.097

    Article  Google Scholar 

  3. Oseh, J.O.; Mohd Norddin, M.N.A.; Ismail, I.; Gbadamosi, A.O.; Agi, A.; Ismail, A.R.: Experimental investigation of cuttings transportation in deviated and horizontal wellbores using polypropylene–nanosilica composite drilling mud. J. Pet. Sci. Eng. 189, 106958 (2020). https://doi.org/10.1016/j.petrol.2020.106958

    Article  Google Scholar 

  4. Jiang, G., et al.: Novel water-based drilling and completion fluid technology to improve wellbore quality during drilling and protect unconventional reservoirs. Engineering 18, 129–142 (2021)

    Article  Google Scholar 

  5. Agi, A., et al.: Application of polymeric nanofluid in enhancing oil recovery at reservoir condition. J. Pet. Sci. Eng. 194, 107476 (2020)

    Article  Google Scholar 

  6. Agi, A.; Junin, R.; Gbonhinbor, J.; Onyekonwu, M.: Natural polymer flow behaviour in porous media for enhanced oil recovery applications: a review. J. Pet. Explor. Prod. Technol. 8(4), 1349–1362 (2018)

    Article  Google Scholar 

  7. Agi, A., et al.: Dynamic stabilization of formation fines to enhance oil recovery of a medium permeability sandstone core at reservoir conditions. J. Mol. Liq. 371, 121107 (2022)

    Article  Google Scholar 

  8. Yakasai, F.; Jaafar, M.Z.; Sidek, M.A.; Bandyopadhyay, S.; Agi, A.; Ngouangna, E.N.: Co-precipitation and grafting of (3-aminopropyl) triethoxysilane on Ferro nanoparticles to enhance oil recovery mechanisms at reservoir conditions. J. Mol. Liq. 371, 121007 (2023)

    Article  Google Scholar 

  9. Taha, N. M.; Lee, S.: Nano graphene application improving drilling fluids performance. Presented at the International Petroleum Technology Conference, OnePetro, (2015). https://doi.org/10.2523/IPTC-18539-MS

  10. Tavakkoli, O.; Kamyab, H.; Shariati, M.; Mohamed, A.M.; Junin, R.: Effect of nanoparticles on the performance of polymer/surfactant flooding for enhanced oil recovery: a review. Fuel 312, 122867 (2022)

    Article  Google Scholar 

  11. Tofighy, M.A.; Mohammadi, T.: Barrier, diffusion, and transport properties of rubber nanocomposites containing carbon nanofillers. In: Carbon-Based Nanofillers and Their Rubber Nanocomposites, pp. 253–285. Elsevier, The Netherlands (2019)

    Chapter  Google Scholar 

  12. Ridha, S.; Ibrahim, A.; Shahari, R.; Fonna, S.: Graphene nanoplatelets as high-performance filtration control material in water-based drilling fluids. In: IOP Conference Series: Materials Science and Engineering, IOP Publishing, p 012025 (2018)

  13. Arain, A.H.; Ridha, S.; Ilyas, S.U.; Mohyaldinn, M.E.; Suppiah, R.R.: Evaluating the influence of graphene nanoplatelets on the performance of invert emulsion drilling fluid in high-temperature wells. J. Pet. Explor. Prod. Technol. 12(9), 1–25 (2022)

    Google Scholar 

  14. Alkhamis, M.; Imqam, A.: New cement formulations utilizing graphene nano platelets to improve cement properties and long-term reliability in oil wells. In: SPE Kingdom of Saudi Arabia annual technical symposium and exhibition, OnePetro (2018)

  15. Tabatabaei, M.; Santos L.; Al Hassan, A. A.; Dahi Taleghani, A.: Limiting deteriorative impacts of oil-based mud residuals on cement bonding. In: SPE Annual Technical Conference and Exhibition, OnePetro (2022)

  16. Srivastava, M.; Singh, J.; Kuila, T.; Layek, R.K.; Kim, N.H.; Lee, J.H.: Recent advances in graphene and its metal-oxide hybrid nanostructures for lithium-ion batteries. Nanoscale 7(11), 4820–4868 (2015)

    Article  Google Scholar 

  17. Aftab, A., et al.: Influence of tailor-made TiO2/API bentonite nanocomposite on drilling mud performance: towards enhanced drilling operations. Appl. Clay Sci. 199, 105862 (2020)

    Article  Google Scholar 

  18. Choi, W.; Lahiri, I.; Seelaboyina, R.; Kang, Y.S.: Synthesis of graphene and its applications: a review. Crit. Rev. Solid State Mater. Sci. 35(1), 52–71 (2010). https://doi.org/10.1080/10408430903505036

    Article  Google Scholar 

  19. Cataldi, P.; Athanassiou, A.; Bayer, I.S.: Graphene nanoplatelets-based advanced materials and recent progress in sustainable applications. Appl. Sci. 8(9), 1438 (2018)

    Article  Google Scholar 

  20. Castillo, A.D.R., et al.: High-yield production of 2D crystals by wet-jet milling. Mater. Horiz. 5(5), 890–904 (2018)

    Article  Google Scholar 

  21. Novoselov, K.S., et al.: Electric field effect in atomically thin carbon films. Science (2004). https://doi.org/10.1126/science.1102896

    Article  Google Scholar 

  22. Kuzmenko, A.B.; Van Heumen, E.; Carbone, F.; Van Der Marel, D.: Universal optical conductance of graphite. Phys. Rev. Lett. 100(11), 117401 (2008)

    Article  Google Scholar 

  23. Geim, A.K.; Novoselov, K.S.: The rise of graphene. In: Nanoscience and Technology: a Collection of Reviews from Nature Journals, pp. 11–19. World Scientific, Singapore (2010)

    Google Scholar 

  24. Ferrari, A.C., et al.: Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7(11), 4598–4810 (2015)

    Article  Google Scholar 

  25. Liang, M.; Luo, B.; Zhi, L.: Application of graphene and graphene-based materials in clean energy-related devices. Int. J. Energy Res. 33(13), 1161–1170 (2009)

    Article  Google Scholar 

  26. Gaikwad, A.V., et al.: Carbon nanotube/carbon nanofiber growth from industrial by-product gases on low-and high-alloy steels. Carbon 50(12), 4722–4731 (2012)

    Article  Google Scholar 

  27. Wang, H.; Liang, Y.; Mirfakhrai, T.; Chen, Z.; Casalongue, H.S.; Dai, H.: Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Res. 4(8), 729–736 (2011)

    Article  Google Scholar 

  28. Losurdo, M.; Giangregorio, M.M.; Capezzuto, P.; Bruno, G.: Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Phys. Chem. Chem. Phys. 13(46), 20836–20843 (2011)

    Article  Google Scholar 

  29. Ahmad, M.S., et al.: Effect of reaction conditions on the lifetime of SAPO-34 catalysts in methanol to olefins process–a review. Fuel 283, 118851 (2021)

    Article  Google Scholar 

  30. Filipponi, L.; Sutherland, D.: Filipponi: NANOYOU teachers training kit in nanotechnologies-Google Scholar https://scholar.google.com/scholar_lookup?title=NANOYOU%20teachers%20training%20kit%20in%20nanotechnologies&author=L.%20Filipponi&publication_year=2010 (2010). Accessed 19 Aug 2022

  31. Zhang, Y.; Tan, Y.-W.; Stormer, H.L.; Kim, P.: Experimental observation of the quantum hall effect and Berry’s phase in graphene. Nature 438(7065), 201–204 (2005)

    Article  Google Scholar 

  32. Lee, C.; Wei, X.; Kysar, J.W.; Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)

    Article  Google Scholar 

  33. Truong, Q.-T.; Pokharel, P.; Song, G.S.; Lee, D.-S.: Preparation and characterization of graphene nanoplatelets from natural graphite via intercalation and exfoliation with tetraalkylammoniumbromide. J. Nanosci. Nanotechnol. 12(5), 4305–4308 (2012)

    Article  Google Scholar 

  34. Kumar, H.P.; Xavior, M.A.: Graphene reinforced metal matrix composite (GRMMC): a review. Procedia Eng. 97, 1033–1040 (2014)

    Article  Google Scholar 

  35. Wolf, E.L.: Applications of graphene: an overview. Springer, New York (2014)

    Book  Google Scholar 

  36. Lang, B.: A LEED study of the deposition of carbon on platinum crystal surfaces. Surf. Sci. 53(1), 317–329 (1975). https://doi.org/10.1016/0039-6028(75)90132-6

    Article  Google Scholar 

  37. Kotov, N.A.: Carbon sheet solutions. Nature 442(7100), 254–255 (2006)

    Article  Google Scholar 

  38. Nieto, A.; Lahiri, D.; Agarwal, A.: Synthesis and properties of bulk graphene nanoplatelets consolidated by spark plasma sintering. Carbon 50(11), 4068–4077 (2012)

    Article  Google Scholar 

  39. Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S.: The chemistry of graphene oxide. Chem. Soc. Rev. 39(1), 228–240 (2010)

    Article  Google Scholar 

  40. Madhad, H.V.; Mishra, N.S.; Patel, S.B.; Panchal, S.S.; Gandhi, R.A.; Vasava, D.V.: Graphene/graphene nanoplatelets reinforced polyamide nanocomposites: a review. High Perform. Polym. 33(9), 981–997 (2021). https://doi.org/10.1177/09540083211011216

    Article  Google Scholar 

  41. Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N.H.; Bose, S.; Lee, J.H.: Recent advances in graphene based polymer composites. Prog. Polym. Sci. 35(11), 1350–1375 (2010)

    Article  Google Scholar 

  42. Park, S.; Ruoff, R.S.: Chemical methods for the production of graphenes. Nat. Nanotechnol. (2009). https://doi.org/10.1038/nnano.2009.58

    Article  Google Scholar 

  43. Mohan, V.B.; Lau, K.; Hui, D.; Bhattacharyya, D.: Graphene-based materials and their composites: a review on production, applications and product limitations. Compos. Part B Eng. 142, 200–220 (2018)

    Article  Google Scholar 

  44. Fu, H.; Zhang, S.; Chen, H.; Weng, J.: Graphene enhances the sensitivity of fiber-optic surface plasmon resonance biosensor. IEEE Sens. J. 15(10), 5478–5482 (2015)

    Article  Google Scholar 

  45. Kausar, A.: Trends in graphene reinforced polyamide nanocomposite for functional application: a review. Polym.-Plast. Technol. Mater. 58(9), 917–933 (2019)

    Google Scholar 

  46. Madhad, H.V.; Vasava, D.V.: Review on recent progress in synthesis of graphene–polyamide nanocomposites. J. Thermoplast. Compos. Mater. 35(4), 570–598 (2022)

    Article  Google Scholar 

  47. Jiménez-Suárez, A.; Prolongo, S.G.: Graphene nanoplatelets. Appl. Sci. 10(5), 1753 (2020)

    Article  Google Scholar 

  48. Wang, Z., et al.: Large-scale and controllable synthesis of graphene quantum dots from rice husk biomass: a comprehensive utilization strategy. ACS Appl. Mater. Interfaces 8(2), 1434–1439 (2016). https://doi.org/10.1021/acsami.5b10660

    Article  MathSciNet  Google Scholar 

  49. Sengupta, R.; Bhattacharya, M.; Bandyopadhyay, S.; Bhowmick, A.K.: A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog. Polym. Sci. 36(5), 638–670 (2011)

    Article  Google Scholar 

  50. Young, R.J.; Kinloch, I.A.; Gong, L.; Novoselov, K.S.: The mechanics of graphene nanocomposites: a review. Compos. Sci. Technol. 72(12), 1459–1476 (2012)

    Article  Google Scholar 

  51. Ambrosi, A.; Chua, C.K.; Bonanni, A.; Pumera, M.: Electrochemistry of graphene and related materials. Chem. Rev. 114(14), 7150–7188 (2014)

    Article  Google Scholar 

  52. Edwards, R.S.; Coleman, K.S.: Graphene synthesis: relationship to applications. Nanoscale 5(1), 38–51 (2013)

    Article  Google Scholar 

  53. Li, X., et al.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312–1314 (2009)

    Article  Google Scholar 

  54. Chua, C.K.; Pumera, M.: Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem. Soc. Rev. 43(1), 291–312 (2014)

    Article  Google Scholar 

  55. Emiru, T.F.; Ayele, D.W.: Controlled synthesis, characterization and reduction of graphene oxide: a convenient method for large scale production. Egypt. J. Basic Appl. Sci. 4(1), 74–79 (2017)

    Google Scholar 

  56. Güler, Ö.; Güler, S.H.; Selen, V.; Albayrak, M.G.; Evin, E.: Production of graphene layer by liquid-phase exfoliation with low sonication power and sonication time from synthesized expanded graphite. Fuller. Nanotub. Carbon Nanostruct. 24(2), 123–127 (2016)

    Article  Google Scholar 

  57. Haar, S., et al.: Liquid-phase exfoliation of graphite into single-and few-layer graphene with α-functionalized alkanes. J. Phys. Chem. Lett. 7(14), 2714–2721 (2016)

    Article  Google Scholar 

  58. Dimiev, A.M.; Khannanov, A.; Vakhitov, I.; Kiiamov, A.; Shukhina, K.; Tour, J.M.: Revisiting the mechanism of oxidative unzipping of multiwall carbon nanotubes to graphene nanoribbons. ACS Nano 12(4), 3985–3993 (2018)

    Article  Google Scholar 

  59. Huang, H.; Chen, S.; Wee, A.T.S.; Chen, W.: Epitaxial growth of graphene on silicon carbide (SiC). In: Graphene, pp. 177–198. Elsevier, The Netherlands (2014)

    Chapter  Google Scholar 

  60. Yazdi, G.R.; Iakimov, T.; Yakimova, R.: Epitaxial graphene on SiC: a review of growth and characterization. Crystals 6(5), 53 (2016)

    Article  Google Scholar 

  61. Yang, Y., et al.: Bottom-up fabrication of graphene on silicon/silica substrate via a facile soft-hard template approach. Sci. Rep. 5(1), 1–7 (2015)

    MathSciNet  Google Scholar 

  62. Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S.I.; Seal, S.: Graphene based materials: past, present and future. Prog. Mater. Sci. 56(8), 1178–1271 (2011)

    Article  Google Scholar 

  63. Jayasena, B.; Subbiah, S.: A novel mechanical cleavage method for synthesizing few-layer graphenes. Nanoscale Res. Lett. 6(1), 95 (2011). https://doi.org/10.1186/1556-276X-6-95

    Article  Google Scholar 

  64. Chen, J.; Duan, M.; Chen, G.: Continuous mechanical exfoliation of graphene sheets via three-roll mill. J. Mater. Chem. 22(37), 19625–19628 (2012)

    Article  Google Scholar 

  65. Yi, M.; Shen, Z.: A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 3(22), 11700–11715 (2015)

    Article  Google Scholar 

  66. Viculis, L.M.; Mack, J.J.; Kaner, R.B.: A chemical route to carbon nanoscrolls. Science 299(5611), 1361–1361 (2003)

    Article  Google Scholar 

  67. Lapshin, R.V.: STM observation of a box-shaped graphene nanostructure appeared after mechanical cleavage of pyrolytic graphite. Appl. Surf. Sci. 360, 451–460 (2016). https://doi.org/10.1016/j.apsusc.2015.09.222

    Article  Google Scholar 

  68. Kim, K.S., et al.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009)

    Article  Google Scholar 

  69. Reina, A., et al.: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30–35 (2009)

    Article  Google Scholar 

  70. Eda, G.; Fanchini, G.; Chhowalla, M.: Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3(5), 270–274 (2008)

    Article  Google Scholar 

  71. Bourlinos, A.B.; Georgakilas, V.; Zboril, R.; Steriotis, T.A.; Stubos, A.K.: Liquid-phase exfoliation of graphite towards solubilized graphenes. Small 5(16), 1841–1845 (2009)

    Article  Google Scholar 

  72. Green, A.A.; Hersam, M.C.: Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett. 9(12), 4031–4036 (2009). https://doi.org/10.1021/nl902200b

    Article  Google Scholar 

  73. Hamilton, C.E.; Lomeda, J.R.; Sun, Z.; Tour, J.M.; Barron, A.R.: High-yield organic dispersions of unfunctionalized graphene. Nano Lett. 9(10), 3460–3462 (2009)

    Article  Google Scholar 

  74. Hernandez, Y., et al.: High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3(9), 563–568 (2008)

    Article  Google Scholar 

  75. Jankovskỳ, O.; Kučková, ŠH.; Pumera, M.; Šimek, P.; Sedmidubskỳ, D.; Sofer, Z.: Carbon fragments are ripped off from graphite oxide sheets during their thermal reduction. New J. Chem. 38(12), 5700–5705 (2014)

    Article  Google Scholar 

  76. Somanathan, T.; Prasad, K.; Ostrikov, K.; Saravanan, A.; Mohana Krishna, V.: Graphene oxide synthesis from agro waste. Nanomaterials 5(2), 826–834 (2015)

    Article  Google Scholar 

  77. Yu, H.; Zhang, B.; Bulin, C.; Li, R.; Xing, R.: High-efficient synthesis of graphene oxide based on improved hummers method. Sci. Rep. 6(1), 1–7 (2016)

    Google Scholar 

  78. Yoon, G.; Seo, D.-H.; Ku, K.; Kim, J.; Jeon, S.; Kang, K.: Factors affecting the exfoliation of graphite intercalation compounds for graphene synthesis. Chem. Mater. 27(6), 2067–2073 (2015)

    Article  Google Scholar 

  79. Khan, M.S.; Shakoor, A.; Khan, G.T.; Sultana, S.; Zia, A.: A study of stable graphene oxide dispersions in various solvents. J. Chem. Soc. Pak. 37(1), 62–67 (2015)

    Google Scholar 

  80. Konios, D.; Stylianakis, M.M.; Stratakis, E.; Kymakis, E.: Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interface Sci. 430, 108–112 (2014)

    Article  Google Scholar 

  81. Ciesielski, A.; Samorì, P.: Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 43(1), 381–398 (2014)

    Article  Google Scholar 

  82. Hernandez, Y.; Lotya, M.; Rickard, D.; Bergin, S.D.; Coleman, J.N.: Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir 26(5), 3208–3213 (2010)

    Article  Google Scholar 

  83. Lotya, M., et al.: Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131(10), 3611–3620 (2009)

    Article  Google Scholar 

  84. Si, Y.; Samulski, E.T.: Synthesis of water soluble graphene. Nano Lett. 8(6), 1679–1682 (2008)

    Article  Google Scholar 

  85. Tung, V.C.; Allen, M.J.; Yang, Y.; Kaner, R.B.: High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 4(1), 25–29 (2009)

    Article  Google Scholar 

  86. Tung, V.C., et al.: Low-temperature solution processing of graphene- carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett. 9(5), 1949–1955 (2009)

    Article  Google Scholar 

  87. Nethravathi, C.; Rajamathi, M.: Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 46(14), 1994–1998 (2008)

    Article  Google Scholar 

  88. Somani, P.R.; Somani, S.P.; Umeno, M.: Planer nano-graphenes from camphor by CVD. Chem. Phys. Lett. 430(1–3), 56–59 (2006)

    Article  Google Scholar 

  89. Campos-Delgado, J., et al.: CVD synthesis of mono-and few-layer graphene using alcohols at low hydrogen concentration and atmospheric pressure. Chem. Phys. Lett. 584, 142–146 (2013)

    Article  Google Scholar 

  90. Min, B.H.; Kim, D.W.; Kim, K.H.; Choi, H.O.; Jang, S.W.; Jung, H.-T.: Bulk scale growth of CVD graphene on Ni nanowire foams for a highly dense and elastic 3D conducting electrode. Carbon 80, 446–452 (2014)

    Article  Google Scholar 

  91. Brownson, D.A.; Banks, C.E.: The electrochemistry of CVD graphene: progress and prospects. Phys. Chem. Chem. Phys. 14(23), 8264–8281 (2012)

    Article  Google Scholar 

  92. Lee, X.J.; Lee, L.Y.; Foo, L.P.Y.; Tan, K.W.; Hassell, D.G.: Evaluation of carbon-based nanosorbents synthesised by ethylene decomposition on stainless steel substrates as potential sequestrating materials for nickel ions in aqueous solution. J. Environ. Sci. 24(9), 1559–1568 (2012)

    Article  Google Scholar 

  93. Yu, Q.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y.P.; Pei, S.-S.: Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 93(11), 113103 (2008)

    Article  Google Scholar 

  94. Gupta, B.; Notarianni, M.; Mishra, N.; Shafiei, M.; Iacopi, F.; Motta, N.: Evolution of epitaxial graphene layers on 3C SiC/Si (1 1 1) as a function of annealing temperature in UHV. Carbon 68, 563–572 (2014)

    Article  Google Scholar 

  95. Jang, J., et al.: Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure. Sci. Rep. 5(1), 1–7 (2015)

    Article  MathSciNet  Google Scholar 

  96. Obraztsov, A.N.; Zolotukhin, A.A.; Ustinov, A.O.; Volkov, A.P.; Svirko, Y.; Jefimovs, K.: DC discharge plasma studies for nanostructured carbon CVD. Diam. Relat. Mater. 12(3–7), 917–920 (2003)

    Article  Google Scholar 

  97. Kalita, G., et al.: Low temperature deposited graphene by surface wave plasma CVD as effective oxidation resistive barrier. Corros. Sci. 78, 183–187 (2014)

    Article  Google Scholar 

  98. Shang, N.G., et al.: Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv. Funct. Mater. 18(21), 3506–3514 (2008)

    Article  Google Scholar 

  99. Yuan, G.D., et al.: Graphene sheets via microwave chemical vapor deposition. Chem. Phys. Lett. 467(4–6), 361–364 (2009)

    Article  Google Scholar 

  100. Meškinis, Š; Vasiliauskas, A.; Guobienė, A.; Talaikis, M.; Niaura, G.; Gudaitis, R.: The direct growth of planar and vertical graphene on Si (100) via microwave plasma chemical vapor deposition: synthesis conditions effects. RSC Adv. 12(29), 18759–18772 (2022)

    Article  Google Scholar 

  101. Kidambi, P.R., et al.: A scalable route to nanoporous large-area atomically thin graphene membranes by roll-to-roll chemical vapor deposition and polymer support casting. ACS Appl. Mater. Interfaces 10(12), 10369–10378 (2018)

    Article  Google Scholar 

  102. Kim, C.-D.; Kim, M.; Jo, Y.: Study on the temperature dependence of three-dimensional graphene structure by thermal chemical vapor deposition. New Phys.: Sae Mulli 72, 329–335 (2022)

    Google Scholar 

  103. Cano-Márquez, A.G., et al.: Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett. 9(4), 1527–1533 (2009)

    Article  Google Scholar 

  104. Jiao, L.; Zhang, L.; Wang, X.; Diankov, G.; Dai, H.: Narrow graphene nanoribbons from carbon nanotubes. Nature 458(7240), 877–880 (2009)

    Article  Google Scholar 

  105. Zhong, Y.L.; Tian, Z.; Simon, G.P.; Li, D.: Scalable production of graphene via wet chemistry: progress and challenges. Mater. Today 18(2), 73–78 (2015)

    Article  Google Scholar 

  106. Dato, A.; Frenklach, M.: Substrate-free microwave synthesis of graphene: experimental conditions and hydrocarbon precursors. New J. Phys. 12(12), 125013 (2010)

    Article  Google Scholar 

  107. Li, Y.; Chen, Q.; Xu, K.; Kaneko, T.; Hatakeyama, R.: Synthesis of graphene nanosheets from petroleum asphalt by pulsed arc discharge in water. Chem. Eng. J. 215, 45–49 (2013)

    Google Scholar 

  108. Akhavan, O.; Bijanzad, K.; Mirsepah, A.: Synthesis of graphene from natural and industrial carbonaceous wastes. RSC Adv. 4(39), 20441–20448 (2014)

    Article  Google Scholar 

  109. Primo, A.; Atienzar, P.; Sanchez, E.; Delgado, J.M.; García, H.: From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chem. Commun. 48(74), 9254–9256 (2012)

    Article  Google Scholar 

  110. Hallaj, T.; Amjadi, M.; Manzoori, J.L.; Shokri, R.: Chemiluminescence reaction of glucose-derived graphene quantum dots with hypochlorite, and its application to the determination of free chlorine. Microchim. Acta 182(3), 789–796 (2015)

    Article  Google Scholar 

  111. Qu, J.; Luo, C.; Zhang, Q.; Cong, Q.; Yuan, X.: Easy synthesis of graphene sheets from alfalfa plants by treatment of nitric acid. Mater. Sci. Eng. B 178(6), 380–382 (2013)

    Article  Google Scholar 

  112. Ekhlasi, L.; Younesi, H.; Rashidi, A.; Bahramifar, N.: Populus wood biomass-derived graphene for high CO2 capture at atmospheric pressure and estimated cost of production. Process. Saf. Environ. Prot. 113, 97–108 (2018)

    Article  Google Scholar 

  113. Gupta, S.S.; Sreeprasad, T.S.; Maliyekkal, S.M.; Das, S.K.; Pradeep, T.: Graphene from sugar and its application in water purification. ACS Appl. Mater. Interfaces 4(8), 4156–4163 (2012)

    Article  Google Scholar 

  114. Wang, Y.; Shi, Z.; Yin, J.: Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites. ACS Appl. Mater. Interfaces 3(4), 1127–1133 (2011)

    Article  Google Scholar 

  115. Ismail, M.S., et al.: Synthesis and characterization of graphene derived from rice husks. Malays. J. Fundam. Appl. Sci. 15(4), 516–521 (2019). https://doi.org/10.11113/mjfas.v15n4.1228

    Article  Google Scholar 

  116. Pandey, S., et al.: Bulk synthesis of graphene nanosheets from plastic waste: an invincible method of solid waste management for better tomorrow. Waste Manag. 88, 48–55 (2019)

    Article  Google Scholar 

  117. Ding, Z., et al.: Green synthesis of chemical converted graphene sheets derived from pulping black liquor. Carbon 158, 690–697 (2020)

    Article  Google Scholar 

  118. Sun, L., et al.: From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J. Mater. Chem. A 1(21), 6462 (2013). https://doi.org/10.1039/c3ta10897j

    Article  Google Scholar 

  119. Hashmi, A.; Singh, A.K.; Jain, B.; Singh, A.: Muffle atmosphere promoted fabrication of graphene oxide nanoparticle by agricultural waste. Fuller. Nanotub. Carbon Nanostruct. 28(8), 627–636 (2020)

    Article  Google Scholar 

  120. Ayub, M.; Othman, M.H.D.; Yusop, M.Z.M.; Khan, I.U.; Zakria, H.S.: Facile and economical, single-step single-chemical method for conversion of palm oil fuel ash waste into graphene nanosheets. Appl. Mater. Today 25, 101193 (2021)

    Article  Google Scholar 

  121. Singh, P.; Bahadur, J.; Pal, K.: One-step one chemical synthesis process of graphene from rice husk for energy storage applications. Graphene 6(3), 61–71 (2017)

    Article  Google Scholar 

  122. Schlesinger, W.H.; Bernhardt, E.S.: Biogeochemistry: an analysis of global change. Academic press, Cambridge (2013)

    Google Scholar 

  123. Arifin, N.F.T., et al.: Comparison of different activated agents on biomass-derived graphene towards the hybrid nanocomposites with zeolitic imidazolate framework-8 for room temperature hydrogen storage. J. Environ. Chem. Eng. 9(2), 105118 (2021). https://doi.org/10.1016/j.jece.2021.105118

    Article  Google Scholar 

  124. Muramatsu, H., et al.: Rice husk-derived graphene with nano-sized domains and clean edges. Small 10(14), 2766–2770 (2014)

    Article  Google Scholar 

  125. Ruiz-Hitzky, E.; Darder, M.; Fernandes, F.M.; Zatile, E.; Palomares, F.J.; Aranda, P.: Supported graphene from natural resources: easy preparation and applications. Wiley Online Library, New Jersey (2011)

    Google Scholar 

  126. Zhu, C.; Guo, S.; Fang, Y.; Dong, S.: Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4(4), 2429–2437 (2010)

    Article  Google Scholar 

  127. Kong, X., et al.: Synthesis of graphene-like carbon from biomass pyrolysis and its applications. Chem. Eng. J. 399, 125808 (2020)

    Article  Google Scholar 

  128. Long, S.-Y.; Du, Q.-S.; Wang, S.-Q.; Tang, P.-D.; Li, D.-P.; Huang, R.-B.: Graphene two-dimensional crystal prepared from cellulose two-dimensional crystal hydrolysed from sustainable biomass sugarcane bagasse. J. Clean. Prod. 241, 118209 (2019)

    Article  Google Scholar 

  129. Chen, F.; Yang, J.; Bai, T.; Long, B.; Zhou, X.: Facile synthesis of few-layer graphene from biomass waste and its application in lithium ion batteries. J. Electroanal. Chem. 768, 18–26 (2016)

    Article  Google Scholar 

  130. Purkait, T.; Singh, G.; Singh, M.; Kumar, D.; Dey, R.S.: Large area few-layer graphene with scalable preparation from waste biomass for high-performance supercapacitor. Sci. Rep. 7(1), 1–14 (2017)

    Article  Google Scholar 

  131. Shams, S.S.; Zhang, L.S.; Hu, R.; Zhang, R.; Zhu, J.: Synthesis of graphene from biomass: a green chemistry approach. Mater. Lett. 161, 476–479 (2015)

    Article  Google Scholar 

  132. Sankar, S., et al.: Ultrathin graphene nanosheets derived from rice husks for sustainable supercapacitor electrodes. New J. Chem. 41(22), 13792–13797 (2017)

    Article  Google Scholar 

  133. Sekar, S.; Aqueel Ahmed, A.T.; Sim, D.H.; Lee, S.: Extraordinarily high hydrogen-evolution-reaction activity of corrugated graphene nanosheets derived from biomass rice husks. Int. J. Hydrog. Energy (2022). https://doi.org/10.1016/j.ijhydene.2022.02.233

    Article  Google Scholar 

  134. Wang, C.-I.; Periasamy, A.P.; Chang, H.-T.: Photoluminescent C-dots@ RGO probe for sensitive and selective detection of acetylcholine. Anal. Chem. 85(6), 3263–3270 (2013)

    Article  Google Scholar 

  135. Bhunia, P., et al.: A non-volatile memory device consisting of graphene oxide covalently functionalized with ionic liquid. Chem. Commun. 48(6), 913–915 (2012)

    Article  Google Scholar 

  136. Stankovich, S.; Piner, R.D.; Chen, X.; Wu, N.; Nguyen, S.T.; Ruoff, R.S.: Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J. Mater. Chem. 16(2), 155–158 (2006)

    Article  Google Scholar 

  137. Niyogi, S.; Bekyarova, E.; Itkis, M.E.; McWilliams, J.L.; Hamon, M.A.; Haddon, R.C.: Solution properties of graphite and graphene. J. Am. Chem. Soc. 128(24), 7720–7721 (2006)

    Article  Google Scholar 

  138. Stankovich, S., et al.: Graphene-based composite materials. Nature 442(7100), 282–286 (2006)

    Article  Google Scholar 

  139. Hirsch, A.: A review of carbon materials and nanotechnology. Mol. Cryst. Liq. Cryst. (2011). https://doi.org/10.1080/15421406.2011.590375

    Article  Google Scholar 

  140. Ibrahim, A.; Ridha, S.; Amer, A.; Shahari, R.; Ganat, T.: Influence of degree of dispersion of noncovalent functionalized graphene nanoplatelets on rheological behaviour of aqueous drilling fluids. Int. J. Chem. Eng. 2019, 1–11 (2019). https://doi.org/10.1155/2019/8107168

    Article  Google Scholar 

  141. Morrison, I.D.; Ross, S.: Colloidal dispersions: suspensions, emulsions, and foams. Wiley-Interscience, New York (2002)

    Google Scholar 

  142. Hao, R.; Qian, W.; Zhang, L.; Hou, Y.: Aqueous dispersions of TCNQ-anion-stabilized graphene sheets. Chem. Commun. 48, 6576–6578 (2008). https://doi.org/10.1039/B816971C

    Article  Google Scholar 

  143. Zhang, M., et al.: Production of graphene sheets by direct dispersion with aromatic healing agents. Small 6(10), 1100–1107 (2010). https://doi.org/10.1002/smll.200901978

    Article  Google Scholar 

  144. Mehrali, M., et al.: Preparation, characterization, viscosity, and thermal conductivity of nitrogen-doped graphene aqueous nanofluids. J. Mater. Sci. 49(20), 7156–7171 (2014). https://doi.org/10.1007/s10853-014-8424-8

    Article  Google Scholar 

  145. Wan, Y.-J., et al.: Improved dispersion and interface in the graphene/epoxy composites via a facile surfactant-assisted process. Compos. Sci. Technol. 82, 60–68 (2013)

    Article  Google Scholar 

  146. Pu, N.-W.; Wang, C.-A.; Liu, Y.-M.; Sung, Y.; Wang, D.-S.; Ger, M.-D.: Dispersion of graphene in aqueous solutions with different types of surfactants and the production of graphene films by spray or drop coating. J. Taiwan Inst. Chem. Eng. 43(1), 140–146 (2012)

    Article  Google Scholar 

  147. Sarsam, W.S.; Amiri, A.; Kazi, S.N.; Badarudin, A.: Stability and thermophysical properties of non-covalently functionalized graphene nanoplatelets nanofluids. Energy Convers. Manag. 116, 101–111 (2016)

    Article  Google Scholar 

  148. Mohammadi, A.; Barikani, M.; Barmar, M.: Effect of surface modification of Fe3O4 nanoparticles on thermal and mechanical properties of magnetic polyurethane elastomer nanocomposites. J. Mater. Sci. 48(21), 7493–7502 (2013)

    Article  Google Scholar 

  149. McAllister, M.J., et al.: Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19(18), 4396–4404 (2007)

    Article  Google Scholar 

  150. Stankovich, S., et al.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007)

    Article  Google Scholar 

  151. Zhu, G.; Liu, Y.; Sweeney, S.; Chen, S.: Functionalization and grafting of nanoparticle surfaces. J. Encycl. Interfacial Chem. pp. 711–724 (2018)

  152. Ngouangna, E.N.; Zaidi Jaafar, M.; Norddin, M.; Agi, A.; Oseh, J.O.; Mamah, S.: Surface modification of nanoparticles to improve oil recovery mechanisms: a critical review of the methods, influencing parameters, advances and prospects. J. Mol. Liq. 360, 119502 (2022). https://doi.org/10.1016/j.molliq.2022.119502

    Article  Google Scholar 

  153. Rao, R.A.K.; Singh, S.; Singh, B.R.; Khan, W.; Naqvi, A.H.: Synthesis and characterization of surface modified graphene–zirconium oxide nanocomposite and its possible use for the removal of chlorophenol from aqueous solution. J. Environ. Chem. Eng. 2(1), 199–210 (2014). https://doi.org/10.1016/j.jece.2013.12.011

    Article  Google Scholar 

  154. Qamar, S.; Yasin, S.; Ramzan, N.; Iqbal, T.; Akhtar, M.N.: Preparation of stable dispersion of graphene using copolymers: dispersity and aromaticity analysis. Soft Mater. 17(2), 190–202 (2019). https://doi.org/10.1080/1539445X.2019.1583673

    Article  Google Scholar 

  155. Uddin, M.E.; Kuila, T.; Nayak, G.C.; Kim, N.H.; Ku, B.-C.; Lee, J.H.: Effects of various surfactants on the dispersion stability and electrical conductivity of surface modified graphene. J. Alloys Compd. 562, 134–142 (2013)

    Article  Google Scholar 

  156. Paek, H.-J., et al.: Modulation of the pharmacokinetics of zinc oxide nanoparticles and their fates in vivo. Nanoscale 5(23), 11416–11427 (2013). https://doi.org/10.1039/C3NR02140H

    Article  Google Scholar 

  157. Zhang, C.; Uchikoshi, T.; Liu, L.; Kikuchi, M.; Ichinose, I.: Effect of surface modification with TiO2 coating on improving filtration efficiency of whisker-hydroxyapatite (HAp) membrane. Coatings 10(7), 670 (2020)

    Article  Google Scholar 

  158. Park, S., et al.: Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 9(4), 1593–1597 (2009). https://doi.org/10.1021/nl803798y

    Article  Google Scholar 

  159. Hadadian, M.; Goharshadi, E.K.; Fard, M.M.; Ahmadzadeh, H.: Synergistic effect of graphene nanosheets and zinc oxide nanoparticles for effective adsorption of Ni (II) ions from aqueous solutions. Appl. Phys. A 124(3), 239 (2018). https://doi.org/10.1007/s00339-018-1664-8

    Article  Google Scholar 

  160. Sham, A.Y.W.; Notley, S.M.: Layer-by-layer assembly of thin films containing exfoliated pristine graphene nanosheets and polyethyleneimine. Langmuir 30(9), 2410–2418 (2014). https://doi.org/10.1021/la404745b

    Article  Google Scholar 

  161. Badawy, A.M.E.; Luxton, T.P.; Silva, R.G.; Scheckel, K.G.; Suidan, M.T.; Tolaymat, T.M.: Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ. Sci. Technol. 44(4), 1260–1266 (2010)

    Article  Google Scholar 

  162. Kamiya, H., et al.: Characteristics and behavior of nanoparticles and its dispersion systems. In: Nanoparticle Technology Handbook, pp. 113–176. Elsevier, The Netherlands (2008)

    Chapter  Google Scholar 

  163. Li, D.; Müller, M.B.; Gilje, S.; Kaner, R.B.; Wallace, G.G.: Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. (2008). https://doi.org/10.1038/nnano.2007.451

    Article  Google Scholar 

  164. Dreyer, D.R.; Murali, S.; Zhu, Y.; Ruoff, R.S.; Bielawski, C.W.: Reduction of graphite oxide using alcohols. J. Mater. Chem. 21(10), 3443–3447 (2011)

    Article  Google Scholar 

  165. Zhu, J.: New solutions to a new problem. Nat. Nanotechnol. 3(9), 528–529 (2008)

    Article  Google Scholar 

  166. Marcano, D.C., et al.: Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010)

    Article  Google Scholar 

  167. Liu, J.; Tang, J.; Gooding, J.J.: Strategies for chemical modification of graphene and applications of chemically modified graphene. J. Mater. Chem. 22(25), 12435–12452 (2012)

    Article  Google Scholar 

  168. Kumar, A.; Dixit, C.K.: Methods for characterization of nanoparticles. In: Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids, pp. 43–58. Elsevier, The Netherlands (2017)

    Chapter  Google Scholar 

  169. Chua, C.K.; Pumera, M.: Covalent chemistry on graphene. Chem. Soc. Rev. 42(8), 3222–3233 (2013)

    Article  Google Scholar 

  170. Urade, A.:Graphene functionalization: covalent versus non-covalent. AZoNano.com. https://www.azonano.com/article.aspx?ArticleID=6097 (2022). Accessed 30 Nov 2022

  171. Park, J.; Yan, M.: Covalent functionalization of graphene with reactive intermediates. Acc. Chem. Res. 46(1), 181–189 (2013). https://doi.org/10.1021/ar300172h

    Article  Google Scholar 

  172. Jiang, K.G.; Li, X.; Luckham, P.F.: Study of graphene oxide to stabilize shale in water-based drilling fluids. Colloids Surf., A 606, 125457 (2020). https://doi.org/10.1016/j.colsurfa.2020.125457

    Article  Google Scholar 

  173. Georgakilas, V., et al.: Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev. 116(9), 5464–5519 (2016). https://doi.org/10.1021/acs.chemrev.5b00620

    Article  Google Scholar 

  174. Choi, E.-Y., et al.: Noncovalent functionalization of graphene with end-functional polymers. J. Mater. Chem. 20(10), 1907–1912 (2010)

    Article  Google Scholar 

  175. Lee, D.-W.; Kim, T.; Lee, M.: An amphiphilic pyrene sheet for selective functionalization of graphene. Chem. Commun. 47(29), 8259–8261 (2011)

    Article  Google Scholar 

  176. Song, P.; Xu, Z.; Wu, Y.; Cheng, Q.; Guo, Q.; Wang, H.: Super-tough artificial nacre based on graphene oxide via synergistic interface interactions of π-π stacking and hydrogen bonding. Carbon 111, 807–812 (2017)

    Article  Google Scholar 

  177. Sheng, Z.-H.; Gao, H.-L.; Bao, W.-J.; Wang, F.-B.; Xia, X.-H.: Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J. Mater. Chem. 22(2), 390–395 (2012)

    Article  Google Scholar 

  178. Stephan, O., et al.: Doping graphitic and carbon nanotube structures with boron and nitrogen. Science 266(5191), 1683–1685 (1994)

    Article  Google Scholar 

  179. Wang, X., et al.: N-doping of graphene through electrothermal reactions with ammonia. Science 324(5928), 768–771 (2009)

    Article  Google Scholar 

  180. Wu, Z.-S.; Ren, W.; Xu, L.; Li, F.; Cheng, H.-M.: Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5(7), 5463–5471 (2011)

    Article  Google Scholar 

  181. Panchakarla, L.S., et al.: Synthesis, structure, and properties of boron-and nitrogen-doped graphene. Adv. Mater. 21(46), 4726–4730 (2009)

    Article  Google Scholar 

  182. Rao, C.N.R.; Gopalakrishnan, K.; Govindaraj, A.: Synthesis, properties and applications of graphene doped with boron, nitrogen and other elements. Nano Today 9(3), 324–343 (2014)

    Article  Google Scholar 

  183. Tang, Y.-B., et al.: Tunable band gaps and p-type transport properties of boron-doped graphenes by controllable ion doping using reactive microwave plasma. ACS Nano 6(3), 1970–1978 (2012)

    Article  Google Scholar 

  184. Zhao, L., et al.: Visualizing individual nitrogen dopants in monolayer graphene. Science 333(6045), 999–1003 (2011)

    Article  Google Scholar 

  185. Wang, X.; Sun, G.; Routh, P.; Kim, D.-H.; Huang, W.; Chen, P.: Heteroatom-doped graphene materials: syntheses, properties and applications. Chem. Soc. Rev. 43(20), 7067–7098 (2014)

    Article  Google Scholar 

  186. Yeom, D.-Y., et al.: High-concentration boron doping of graphene nanoplatelets by simple thermal annealing and their supercapacitive properties. Sci. Rep. (2015). https://doi.org/10.1038/srep09817

    Article  Google Scholar 

  187. Le Ba, T.; Mahian, O.; Wongwises, S.; Szilágyi, I.M.: Review on the recent progress in the preparation and stability of graphene-based nanofluids. J. Therm. Anal. Calorim. 142(3), 1145–1172 (2020). https://doi.org/10.1007/s10973-020-09365-9

    Article  Google Scholar 

  188. Chowdhury, I.; Hou, W.-C.; Goodwin, D.; Henderson, M.; Zepp, R.G.; Bouchard, D.: Sunlight affects aggregation and deposition of graphene oxide in the aquatic environment. Water Res. 78, 37–46 (2015)

    Article  Google Scholar 

  189. Li, Z.; Jiang, H.; Wang, X.; Wang, C.; Wei, X.: Effect of pH on adsorption of tetracycline antibiotics on graphene oxide. Int. J. Environ. Res. Public Health 20(3), 2448 (2023). https://doi.org/10.3390/ijerph20032448

    Article  Google Scholar 

  190. Andrade-Guel, M., et al.: Surface modification of graphene nanoplatelets by organic acids and ultrasonic radiation for enhance uremic toxins adsorption. Materials (2019). https://doi.org/10.3390/ma12050715

    Article  Google Scholar 

  191. Alhourani, A.; Førde, J.-L.; Eichacker, L.A.; Herfindal, L.; Hagland, H.R.: Improved pH-responsive release of phenformin from low-defect graphene compared to graphene oxide. ACS Omega 6(38), 24619–24629 (2021). https://doi.org/10.1021/acsomega.1c03283

    Article  Google Scholar 

  192. Cabello-Alvarado, C., et al.: Graphene nanoplatelets modified with amino-groups by ultrasonic radiation of variable frequency for potential adsorption of uremic toxins. Nanomaterials (2019). https://doi.org/10.3390/nano9091261

    Article  Google Scholar 

  193. Mancillas-Salas, S.; Reynosa-Martinez, A.C.; Barroso-Flores, J.; Lopez-Honorato, E.: Impact of secondary salts, temperature, and pH on the colloidal stability of graphene oxide in water. Nanoscale Adv. 4(11), 2435–2443 (2022). https://doi.org/10.1039/D2NA00070A

    Article  Google Scholar 

  194. SWACO, M.: MI SWACO joins Rice University in Nanotech Research Program. Press Release Oct. vol. 28 (2009)

  195. Murtaza, M., et al.: Performance evaluation of iron oxide and graphite nanoparticles in water-based drilling muds at hpht conditions. Presented at the Middle East Oil, Gas and Geosciences Show, OnePetro (2023). https://doi.org/10.2118/213963-MS

  196. Blkoor, S.O., et al.: Enhanced cutting transport performance of water-based drilling muds using polyethylene glycol/nanosilica composites modified by sodium dodecyl sulphate. Geoenergy Sci. Eng. 230, 212276 (2023)

    Article  Google Scholar 

  197. Oseh, J.O., et al.: Rheological and filtration control performance of water-based drilling muds at different temperatures and salt contaminants using surfactant-assisted novel nanohydroxyapatite. Geoenergy Sci. Eng. 228, 211994 (2023). https://doi.org/10.1016/j.geoen.2023.211994

    Article  Google Scholar 

  198. Ahmad, M.; Ali, I.; Bins Safri, M.S.; Bin Mohammad Faiz, M.A.I.; Zamir, A.: Synergetic effects of graphene nanoplatelets/tapioca starch on water-based drilling muds: enhancements in rheological and filtration characteristics. Polymers 13(16), 2655 (2021). https://doi.org/10.3390/polym13162655

    Article  Google Scholar 

  199. Saleh, T. A.; Al-Arfaj, M. K.; Rana, A. A.: Modified graphene shale inhibitors, US11230657B2 [Online]. Available: https://patents.google.com/patent/US11230657B2/en (2022). Accessed 19 Sept 2023

  200. Xuan, Y.; Jiang, G.; Li, Y.: Nanographite oxide as ultrastrong fluid-loss-control additive in water-based drilling fluids. J. Dispers. Sci. Technol. 35(10), 1386–1392 (2014). https://doi.org/10.1080/01932691.2013.858350

    Article  Google Scholar 

  201. Neuberger, N.; Adidharma, H.; Fan, M.: Graphene: a review of applications in the petroleum industry. J. Pet. Sci. Eng. 167, 152–159 (2018). https://doi.org/10.1016/j.petrol.2018.04.016

    Article  Google Scholar 

  202. Cripps, S. J., et al.: Disposal of oil-based cuttings. Rogalandsforskning, [Online]. Available: https://norceresearch.brage.unit.no/norceresearch-xmlui/handle/11250/2712444 (1998). Accessed 20 Apr 2022

  203. Gentzis, T.; Deisman, N.; Chalaturnyk, R.J.: Effect of drilling fluids on coal permeability: Impact on horizontal wellbore stability. Int. J. Coal Geol. 78(3), 177–191 (2009)

    Article  Google Scholar 

  204. Marsh, R.: A database of archived drilling records of the drill cuttings piles at the north west Hutton oil platform. Mar. Pollut. Bull. 46(5), 587–593 (2003)

    Article  Google Scholar 

  205. Bridges, S.; Robinson, L.: A practical handbook for drilling fluids processing. Gulf Professional Publishing, Houston (2020)

    Google Scholar 

  206. Guo, B.; Liu, G.: Applied drilling circulation systems: hydraulics, calculations and models. Gulf Professional Publishing, Houston (2011)

    Google Scholar 

  207. Gong, W., et al.: 2021 Synthesis, characterization, and performance evaluation of starch-based degradable temporary plugging agent for environmentally friendly drilling fluid. Lithosphere 1, 6679756 (2021)

    Article  Google Scholar 

  208. Sajjadian, M.; Sajjadian, V.A.; Rashidi, A.: Experimental evaluation of nanomaterials to improve drilling fluid properties of water-based muds HP/HT applications. J. Pet. Sci. Eng. 190, 107006 (2020)

    Article  Google Scholar 

  209. Caenn, R.; Darley, H.C.; Gray, G.R.: Composition and properties of drilling and completion fluids. Gulf professional publishing, Houston (2011)

    Google Scholar 

  210. Aftab, A.; Ismail, A.R.; Ibupoto, Z.H.: Enhancing the rheological properties and shale inhibition behavior of water-based mud using nanosilica, multi-walled carbon nanotube, and graphene nanoplatelet. Egypt. J. Pet. 26(2), 291–299 (2017). https://doi.org/10.1016/j.ejpe.2016.05.004

    Article  Google Scholar 

  211. Razali, S.Z., et al.: Effects of morphology and graphitization of carbon nanomaterials on the rheology, emulsion stability, and filtration control ability of drilling fluids. J. Mater. Res. Technol. 21, 2891–2905 (2022)

    Article  Google Scholar 

  212. Putra, P. H. M.; Jan, B. M.; Patah, M. F. A.; Junaidi, M. U. M.: Effect of temperature and concentration of industrial waste graphene on rheological properties of water based mud. In: IOP Conference Series: Materials Science and Engineering, IOP Publishing, pp. 012120 (2020)

  213. Caenn, R.; Darley, H.C.H.; Gray, G.R.: Composition and properties of drilling and completion fluids, 7th edn. Gulf Professional Publishing, United Kingdom (2017)

    Google Scholar 

  214. Abduo, M.I.; Dahab, A.S.; Abuseda, H.; AbdulAziz, A.M.; Elhossieny, M.S.: Comparative study of using water-based mud containing multiwall carbon nanotubes versus oil-based mud in HPHT fields. Egypt. J. Pet. 25(4), 459–464 (2016). https://doi.org/10.1016/j.ejpe.2015.10.008

    Article  Google Scholar 

  215. Elkatatny, S.; Tariq, Z.; Mahmoud, M.: Real time prediction of drilling fluid rheological properties using Artificial Neural Networks visible mathematical model (white box). J. Pet. Sci. Eng. 146, 1202–1210 (2016)

    Article  Google Scholar 

  216. Bhat, S.A.; Charoo, M.S.: Rheological characteristics of coconut grease with graphene nanoplatelets. Biomass Convers. Biorefinery 13, 1–8 (2022)

    Google Scholar 

  217. Madkour, T.M.; Fadl, S.; Dardir, M.M.; Mekewi, M.A.: High performance nature of biodegradable polymeric nanocomposites for oil-well drilling fluids. Egypt. J. Pet. 25(2), 281–291 (2016)

    Article  Google Scholar 

  218. Degeare, J.; Haughton, D.; Mcgurk, M.: 5-pipe sticking. Guide Oilw. Fish. Oper. Gulf Prof. Publ. Burlingt., pp. 12–22 (2003)

  219. Courteille, J. M.; C. Zurdo, C.: A new approach to differential sticking. In: SPE Annual Technical Conference and Exhibition, OnePetro (1985)

  220. Putra, P.H.M.; Jan, B.M.; Patah, M.F.A.; Junaidi, M.U.M.: Effect of temperature and concentration of industrial waste graphene on rheological properties of water based mud. IOP Conf. Ser. Mater. Sci. Eng. 778(1), 012120 (2020). https://doi.org/10.1088/1757-899X/778/1/012120

    Article  Google Scholar 

  221. Gudarzifar, H.; Sabbaghi, S.; Rezvani, A.; Saboori, R.: Experimental investigation of rheological & filtration properties and thermal conductivity of water-based drilling fluid enhanced. Powder Technol. 368, 323–341 (2020)

    Article  Google Scholar 

  222. Collins R.: Drilling Fluids: It’s About the Chemistry. In: Trenchless Technology. https://trenchlesstechnology.com/directional-drilling-fluids-chemistry/ (2014). Accessed 08 Apr 2023

  223. Sönmez, A.; Kök, M.V.; Özel, R.: Performance analysis of drilling fluid liquid lubricants. J. Pet. Sci. Eng. 108, 64–73 (2013)

    Article  Google Scholar 

  224. Maidla, E.E.; Wojtanowicz, A.K.: Laboratory study of borehole friction factor with a dynamic-filtration apparatus. SPE Drill. Eng. 5(03), 247–255 (1990)

    Article  Google Scholar 

  225. Livescu, S.; Craig, S.; Watkins, T.: Smaller coiled tubing diameter achievable by the use of lubricants. In: International Petroleum Technology Conference, OnePetro (2014)

  226. Kim, J.W.; Nam, J.; Jeon, J.; Lee, S.W.: A study on machining performances of micro-drilling of multi-directional carbon fiber reinforced plastic (MD-CFRP) based on nano-solid dry lubrication using graphene nanoplatelets. Materials 14(3), 685 (2021)

    Article  Google Scholar 

  227. Ibrahim, A.M.M.; Li, W.; Xiao, H.; Zeng, Z.; Ren, Y.; Alsoufi, M.S.: Energy conservation and environmental sustainability during grinding operation of Ti–6Al–4V alloys via eco-friendly oil/graphene nano additive and minimum quantity lubrication. Tribol. Int. 150, 106387 (2020)

    Article  Google Scholar 

  228. Amanullah, M.; Al-Tahini, A. M.: Nano-technology-its significance in smart fluid development for oil and gas field application. In: SPE Saudi Arabia Section Technical Symposium, OnePetro (2009)

  229. Zoveidavianpoor, M.; Samsuri, A.: The use of nano-sized Tapioca starch as a natural water-soluble polymer for filtration control in water-based drilling muds. J. Nat. Gas Sci. Eng. 34, 832–840 (2016)

    Article  Google Scholar 

  230. Salih, A. H.; Elshehabi, T. A.; Bilgesu, H. I.: Impact of nanomaterials on the rheological and filtration properties of water-based drilling fluids. In: SPE Eastern Regional Meeting, OnePetro (2016)

  231. William, J.K.M.; Ponmani, S.; Samuel, R.; Nagarajan, R.; Sangwai, J.S.: Effect of CuO and ZnO nanofluids in xanthan gum on thermal, electrical and high pressure rheology of water-based drilling fluids. J. Pet. Sci. Eng. 117, 15–27 (2014)

    Article  Google Scholar 

  232. Cheraghian, G.: Effects of nanoparticles on wettability: a review on applications of nanotechnology in the enhanced Oil recovery. Int. J. Nano Dimens. 6(5), 443–452 (2015)

    Google Scholar 

  233. Saffari, H.R.M.; Soltani, R.; Alaei, M.; Soleymani, M.: Tribological properties of water-based drilling fluids with borate nanoparticles as lubricant additives. J. Pet. Sci. Eng. 171, 253–259 (2018)

    Article  Google Scholar 

  234. Sudharsan, J.; Khare, S.K.: Role of nanocomposite additives in well bore stability during shale formation drilling with water based mud–a comprehensive review. Mater. Today: Proc. 62, 6412–6419 (2022)

    Google Scholar 

  235. Saleh, T.A.: Advanced trends of shale inhibitors for enhanced properties of water-based drilling fluid. Upstream Oil Gas Technol. 8, 100069 (2022)

    Article  Google Scholar 

  236. Growcock, F. B.; Kaageson-Loe, N.; Friedheim, J.; Sanders, M. W.; Bruton, J.: Wellbore stability, stabilization and strengthening. In: Offshore mediterranean conference and exhibition, OMC, pp. OMC-2009. (2009) Accessed 18 Oct 2023

  237. Shahri, M. P.: Quantification of wellbore strengthening mechanisms: comprehensive parametric analysis. In: SPE Annual Technical Conference and Exhibition? SPE, pp. D031S033R003. (2015) Accessed 18 Oct 2023

  238. Aramendiz, J.; Imqam, A.: Water-based drilling fluid formulation using silica and graphene nanoparticles for unconventional shale applications. J. Pet. Sci. Eng. 179, 742–749 (2019). https://doi.org/10.1016/j.petrol.2019.04.085

    Article  Google Scholar 

  239. Saleh, T.A.; Ibrahim, M.A.: Advances in functionalized Nanoparticles based drilling inhibitors for oil production. Energy Rep. 5, 1293–1304 (2019)

    Article  Google Scholar 

  240. Muhammed, N.S.; Olayiwola, T.; Elkatatny, S.: A review on clay chemistry, characterization and shale inhibitors for water-based drilling fluids. J. Pet. Sci. Eng. 206, 109043 (2021)

    Article  Google Scholar 

  241. Rana, A.; Saleh, T. A.; Arfaj, M. K.: Improvement in rheological features, fluid loss and swelling inhibition of water-based drilling mud by using surfactant-modified graphene. In: Abu Dhabi International Petroleum Exhibition & Conference, OnePetro (2019)

  242. Rana, A.; Murtaza, M.; Saleh, T.A.; Kamal, M.S.; Mahmoud, M.: Green nanocomposite synthesis and application: Electrochemically exfoliated graphene-modified biopolymer as an effective clay swelling inhibitor for water-based drilling muds. Geoenergy Sci. Eng. 231, 212394 (2023)

    Article  Google Scholar 

  243. Ikram, R.; Mohamed Jan, B.; Vejpravova, J.; Choudhary, M.I.; Zaman Chowdhury, Z.: Recent advances of graphene-derived nanocomposites in water-based drilling fluids. Nanomaterials 10(10), 2004 (2020)

    Article  Google Scholar 

  244. Lv, K., et al.: Study of Janus amphiphilic graphene oxide as a high-performance shale inhibitor and its inhibition mechanism. Front. Chem. 8, 201 (2020)

    Article  Google Scholar 

  245. Zhu, H.; Li, D.; Zhao, X.; Pang, S.; An, Y.: A novel choline chloride/graphene composite as a shale inhibitor for drilling fluid and the interaction mechanism. RSC Adv. 12(47), 30328–30334 (2022). https://doi.org/10.1039/D2RA05085D

    Article  Google Scholar 

  246. Rana, A.; Arfaj, M.K.; Yami, A.S.; Saleh, T.A.: Cetyltrimethylammonium modified graphene as a clean swelling inhibitor in water-based oil-well drilling mud. J. Environ. Chem. Eng. 8(4), 103802 (2020). https://doi.org/10.1016/j.jece.2020.103802

    Article  Google Scholar 

  247. Saleh, T.A.; Rana, A.; Arfaj, M.K.: Graphene grafted with polyethyleneimine for enhanced shale inhibition in the water-based drilling fluid. Environ. Nanotechnol., Monit. Manag. 14, 100348 (2020). https://doi.org/10.1016/j.enmm.2020.100348

    Article  Google Scholar 

  248. Loh, K.P.; Bao, Q.; Ang, P.K.; Yang, J.: The chemistry of graphene. J. Mater. Chem. 20(12), 2277–2289 (2010). https://doi.org/10.1039/B920539J

    Article  Google Scholar 

  249. Yuxiu, A.; Guancheng, J.; Yourong, Q.; Xianbin, H.; He, S.: High-performance shale plugging agent based on chemically modified graphene. J. Nat. Gas Sci. Eng. 32, 347–355 (2016). https://doi.org/10.1016/j.jngse.2016.04.048

    Article  Google Scholar 

  250. Tian, X.; Song, N.; Yang, G.; Zhou, C.; Zhang, S.; Zhang, P.: Organic-sulfonate functionalized graphene as a high temperature lubricant for efficient antifriction and antiwear in water based drilling fluid. Tribol. Lett. 70(2), 1–8 (2022)

    Article  Google Scholar 

  251. Mondal, J., et al.: Functionalization of titanium alloy surface by graphene nanoplatelets and metal oxides: corrosion inhibition. J. Nanosci. Nanotechnol. 15(9), 6533–6540 (2015). https://doi.org/10.1166/jnn.2015.10775

    Article  Google Scholar 

  252. Alkhamis, M.; Imqam, A.: New cement formulations utilizing graphene nano platelets to improve cement properties and long-term reliability in oil wells. Presented at the SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, OnePetro (2018). https://doi.org/10.2118/192342-MS

  253. Sun, X.; Wu, Q.; Zhang, J.; Qing, Y.; Wu, Y.; Lee, S.: Rheology, curing temperature and mechanical performance of oil well cement: Combined effect of cellulose nanofibers and graphene nano-platelets. Mater. Des. 114, 92–101 (2017). https://doi.org/10.1016/j.matdes.2016.10.050

    Article  Google Scholar 

  254. Du, H.; Pang, S.D.: Dispersion and stability of graphene nanoplatelet in water and its influence on cement composites. Constr. Build. Mater. 167, 403–413 (2018). https://doi.org/10.1016/j.conbuildmat.2018.02.046

    Article  Google Scholar 

  255. Malhotra, N., et al.: Toxicity studies on graphene-based nanomaterials in aquatic organisms: current understanding. Molecules 25(16), 3618 (2020). https://doi.org/10.3390/molecules25163618

    Article  Google Scholar 

  256. Ding, X.; Pu, Y.; Tang, M.; Zhang, T.: Environmental and health effects of graphene-family nanomaterials: potential release pathways, transformation, environmental fate and health risks. Nano Today 42, 101379 (2022). https://doi.org/10.1016/j.nantod.2022.101379

    Article  Google Scholar 

  257. Khan M.: The environmental impact of graphene nanomaterials. AZoNano.com. https://www.azonano.com/article.aspx?ArticleID=6223 (2011). Accessed 13 Sep 2023

  258. Melo de Lima, L.R.; Dias, A.C.; Trindade, T.; Oliveira, J.M.: A comparative life cycle assessment of graphene nanoplatelets- and glass fibre-reinforced poly(propylene) composites for automotive applications. Sci. Total. Environ. 871, 162140 (2023). https://doi.org/10.1016/j.scitotenv.2023.162140

    Article  Google Scholar 

  259. Beloin-Saint-Pierre, D.; Hischier, R.: Towards a more environmentally sustainable production of graphene-based materials: Building on current knowledge to offer recommendations. Int. J. Life Cycle Assess. 26, 327–343 (2021)

    Article  Google Scholar 

  260. Ikram, R.; Jan, B.M.; Ahmad, W.; Sidek, A.; Khan, M.; Kenanakis, G.: Rheological investigation of welding waste-derived graphene oxide in water-based drilling fluids. Materials 15(22), 8266 (2022)

    Article  Google Scholar 

  261. Asim, N., et al.: Application of graphene-based materials in developing sustainable infrastructure: an overview. Compos. Part B Eng. 245, 110188 (2022). https://doi.org/10.1016/j.compositesb.2022.110188

    Article  Google Scholar 

  262. Lovén, K., et al.: Emissions and exposures of graphene nanomaterials, titanium dioxide nanofibers, and nanoparticles during down-stream industrial handling. J. Expo. Sci. Environ. Epidemiol. 31(4), 736–752 (2021)

    Article  Google Scholar 

  263. Tavares, L.; Sousa, L.R.; da Silva, S.M.; Lima, P.S.; Oliveira, J.M.: Effect of Incorporation of graphene nanoplatelets on physicochemical, thermal, rheological, and mechanical properties of biobased and biodegradable blends. Polymers 15(17), 3622 (2023)

    Article  Google Scholar 

  264. Arvidsson, R., et al.: Environmental assessment of emerging technologies: recommendations for prospective LCA. J. Ind. Ecol. 22(6), 1286–1294 (2018)

    Article  Google Scholar 

  265. Devon, J.; Hacking, E.; Wilson, K.; Craciun, M.F.; Vinai, R.: Effects of graphene nanoplatelets inclusion on microstructure and mechanical properties of alkali activated binders. CEMENT 13, 100080 (2023)

    Article  Google Scholar 

  266. Chieng, B.W.; Ibrahim, N.A.; Wan Yunus, W.M.Z.; Hussein, M.Z.; Then, Y.Y.; Loo, Y.Y.: Effects of graphene nanoplatelets and reduced graphene oxide on poly (lactic acid) and plasticized poly (lactic acid): a comparative study. Polymers 6(8), 2232–2246 (2014)

    Article  Google Scholar 

  267. Bøggild, P.: The war on fake graphene. Nature 562(7728), 502–503 (2018). https://doi.org/10.1038/d41586-018-06939-4

    Article  Google Scholar 

  268. Rebecca, P.N.; Durgalakshmi, D.; Balakumar, S.; Rakkesh, R.A.: Biomass-derived graphene-based nanocomposites: a futuristic material for biomedical applications. ChemistrySelect 7(5), e202104013 (2022). https://doi.org/10.1002/slct.202104013

    Article  Google Scholar 

  269. Cui, G.; Bi, Z.; Zhang, R.; Liu, J.; Yu, X.; Li, Z.: A comprehensive review on graphene-based anti-corrosive coatings. Chem. Eng. J. 373, 104–121 (2019). https://doi.org/10.1016/j.cej.2019.05.034

    Article  Google Scholar 

  270. Wu, W.; Yu, B.: Corn flour nano-graphene prepared by the hummers redox method. ACS Omega 5(46), 30252–30256 (2020). https://doi.org/10.1021/acsomega.0c04722

    Article  Google Scholar 

  271. Zhang, H., et al.: A chemical blowing strategy to fabricate biomass-derived carbon-aerogels with graphene-like nanosheet structures for high-performance supercapacitors. Chemsuschem 12(11), 2462–2470 (2019). https://doi.org/10.1002/cssc.201900267

    Article  Google Scholar 

  272. Mondal, D., et al.: Deep eutectic solvent promoted one step sustainable conversion of fresh seaweed biomass to functionalized graphene as a potential electrocatalyst. Green Chem. 18(9), 2819–2826 (2016)

    Article  Google Scholar 

  273. Cheng, J.; Wan, W.; Chen, X.; Zheng, Q.: Preparation and structural characterization of graphene by rice husk. Trans. Chin. Soc. Agric. Eng. 31(12), 288–294 (2015)

    Google Scholar 

  274. Kumar, M.; Sachdeva, A.; Garg, R.K.; Singh, S.: Synthesis and characterization of graphene prepared from rice husk by a simple microwave process. Nano Hybrids Compos. 29, 74–83 (2020). https://doi.org/10.4028/www.scientific.net/NHC.29.74

    Article  Google Scholar 

  275. Béguerie, T.; Weiss-Hortala, E.; Nzihou, A.: Calcium as an innovative and effective catalyst for the synthesis of graphene-like materials from cellulose. Sci. Rep. (2022). https://doi.org/10.1038/s41598-022-25943-3

    Article  Google Scholar 

  276. Baqiya, M.A., et al.: Structural study on graphene-based particles prepared from old coconut shell by acid–assisted mechanical exfoliation. Adv. Powder Technol. 31(5), 2072–2078 (2020). https://doi.org/10.1016/j.apt.2020.02.039

    Article  Google Scholar 

  277. Azam, M.A.; Mudtalib, N.E.S.A.A.; Seman, R.N.A.R.: Synthesis of graphene nanoplatelets from palm-based waste chicken frying oil carbon feedstock by using catalytic chemical vapour deposition. Mater. Today Commun. 15, 81–87 (2018). https://doi.org/10.1016/j.mtcomm.2018.02.019

    Article  Google Scholar 

  278. Ristiani, D., et al.: Mesostructural study on graphenic-based carbon prepared from coconut shells by heat treatment and liquid exfoliation. Heliyon 8(3), e09032 (2022). https://doi.org/10.1016/j.heliyon.2022.e09032

    Article  Google Scholar 

  279. Husin, H.; Elraies, K.A.; Choi, H.J.; Aman, Z.: Influence of graphene nanoplatelet and silver nanoparticle on the rheological properties of waterbased Mud. Appl. Sci. 8(8), 1386 (2018). https://doi.org/10.3390/app8081386

    Article  Google Scholar 

  280. Rafieefar, A.; Sharif, F.; Hashemi, A.; Bazargan, A.M.: Rheological behavior and filtration of water-based drilling fluids containing graphene oxide: experimental measurement, mechanistic understanding, and modeling. ACS Omega 6(44), 29905–29920 (2021). https://doi.org/10.1021/acsomega.1c04398

    Article  Google Scholar 

  281. Kusrini, E.; Oktavianto, F.; Usman, A.; Mawarni, D.P.; Alhamid, M.I.: Synthesis, characterization, and performance of graphene oxide and phosphorylated graphene oxide as additive in water-based drilling fluids. Appl. Surf. Sci. 506, 145005 (2020). https://doi.org/10.1016/j.apsusc.2019.145005

    Article  Google Scholar 

  282. Perumalsamy, J.; Gupta, P.; Sangwai, J.S.: Performance evaluation of esters and graphene nanoparticles as an additives on the rheological and lubrication properties of water-based drilling mud. J. Pet. Sci. Eng. 204, 108680 (2021). https://doi.org/10.1016/j.petrol.2021.108680

    Article  Google Scholar 

  283. Mohamed, A.; Tirth, V.; Kamel, B.M.: Tribological characterization and rheology of hybrid calcium grease with graphene nanosheets and multi-walled carbon nanotubes as additives. J. Mater. Res. Technol. 9(3), 6178–6185 (2020)

    Article  Google Scholar 

  284. Medhi, S.; Chowdhury, S.; Bhatt, N.; Gupta, D.K.; Rana, S.; Sangwai, J.S.: Analysis of high performing graphene oxide nanosheets based non-damaging drilling fluids through rheological measurements and CFD studies. Powder Technol. 377, 379–395 (2021). https://doi.org/10.1016/j.powtec.2020.08.053

    Article  Google Scholar 

  285. Zheng, Y.; Asif, A.; Amiri, A.; Polycarpou, A.A.: Graphene-based aqueous drilling muds as efficient, durable, and environmentally friendly alternatives for oil-based muds. ACS Appl. Nano Mater. 4(2), 1243–1251 (2021). https://doi.org/10.1021/acsanm.0c02852

    Article  Google Scholar 

  286. Movahedi, H.; Jamshidi, S.; Hajipour, M.: New insight into the filtration control of drilling fluids using a graphene-based nanocomposite under static and dynamic conditions. ACS Sustain. Chem. Eng. 9(38), 12844–12857 (2021). https://doi.org/10.1021/acssuschemeng.1c03563

    Article  Google Scholar 

  287. Saleh, A.; Saleh, T. A.; Arfaj, M. K.:Improvement in rheological features, fluid loss and swelling inhibition of water-based drilling mud by using surfactant-modified graphene. In: Abu Dhabi International Petroleum Exhibition & Conference, OnePetro (2019)

  288. Batiha, M.A.; Dardir, M.M.; Abuseda, H.; Negm, N.A.; Ahmed, H.E.: Improving the performance of water-based drilling fluid using amino acid-modified graphene oxide nanocomposite as a promising additive. Egypt. J. Chem. 64(4), 1799–1806 (2021)

    Google Scholar 

  289. Rana, A.; Arfaj, M.K.; Saleh, T.A.: Graphene grafted with glucopyranose as a shale swelling inhibitor in water-based drilling mud. Appl. Clay Sci. 199, 105806 (2020)

    Article  Google Scholar 

  290. Zhang, H.; Yao, J.; Zhang, S.; Chen, H.: Carboxylized graphene oxide nanosheet for shale plugging at high temperature. Appl. Surf. Sci. 558, 149901 (2021)

    Article  Google Scholar 

  291. Ma, J.; Pang, S.; Zhang, Z.; Xia, B.; An, Y.: Experimental study on the polymer/graphene oxide composite as a fluid loss agent for water-based drilling fluids. ACS Omega 6(14), 9750–9763 (2021)

    Article  Google Scholar 

  292. Pumera, M.: Graphene-based nanomaterials and their electrochemistry. Chem. Soc. Rev. 39(11), 4146–4157 (2010). https://doi.org/10.1039/C002690P

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the Ministry of Higher Education (MOHE), Malaysia, under the Fundamental Research Grant Scheme (FRGS) via reference number FRGS/PV/2022/03075 and Universiti Teknologi Malaysia for the funding under UTM Fundamental Research (UTMFR) (Q.J130000.21A2.06E09; QJI30000.3046.04M20) and the Fundamental Research Grant Scheme (FRGS) (Ref: FRGS/1/2023/TK09/UTM/02/13; FRGS/1/2021/TKO/UTM/02/7). Engr. Dr. Jeffrey Onuoma Oseh is a researcher at UTM under the postdoctoral fellowship scheme for the project “Evaluation of Modified Hydroxyapatite Nanoparticles for Rheological and Filtration Properties Modification in Field-Applicable Drilling Muds”.

Author information

Authors and Affiliations

Authors

Contributions

MNY, MNAMN, and II were involved in the conceptualization; MNY, JOO, and ENN contributed to the methodology; MNY, FY, NR, and SQAM assisted in the formal analysis; MNY and JOO contributed to the investigation; MNAMN, AAAR, and ARR contributed to the resources; MNY, JOO, and RY curated the data; MNY, AA, and JOO assisted in writing—original draft preparation; MNY, JOO, and AAAR were involved in writing—review and editing; MNAMN, AAAR, and ARR acquired the funding.

Corresponding authors

Correspondence to M. N. A. Mohd Norddin, Issham Ismail or Jeffrey O. Oseh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yahya, M.N., Norddin, M.N.A.M., Ismail, I. et al. Graphene Nanoplatelet Surface Modification for Rheological Properties Enhancement in Drilling Fluid Operations: A Review. Arab J Sci Eng (2023). https://doi.org/10.1007/s13369-023-08458-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-023-08458-5

Keywords

Navigation