Skip to main content
Log in

Optimizing Base Station’s Anonymity with PID-Controlled Fake Packets and Data Aggregation

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A Base Station (BS) is a gateway between a wireless sensor network (WSN) and the network administrator (NA). It is responsible for gathering information from the sensors and forwarding it to the NA while collecting instruction from him and communicating it to the WSN. Consequently, the BS has become the prime target of attackers. One form of attack on the BS is tempering. The attacker finds the physical location and destroys it. An adversary can easily find the BS since (in a typical WSN) it is the node with the highest traffic. In this paper, we hide the BS using proportional–integral–derivative (PID) controlled fake packet injection and data aggregation. The data aggregation strategy helps combine data from the sensor nodes into a super-packet, thus reducing the actual traffic. On the other hand, the PID-controlled fake packet injection technique compensates for the difference in traffic between the BS and other nodes in the network. The simulation results demonstrate that the proposed approach can protect the BS from packet-tracing and traffic analysis attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Algorithm 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Aliyu, F.; Al-shaboti, M.; Garba, Y.; Sheltami, T.; Barnawi, A.; Morsy, M.A.: Hydrogen sulfide (h2s) gas safety system for oil drilling sites using wireless sensor network. Procedia Comput. Sci. 63, 499–504 (2015). https://doi.org/10.1016/j.procs.2015.08.375

    Article  Google Scholar 

  2. IndustryArc: Wireless Sensor Network Market Research Report: Market size, Industry outlook, Market Forecast, Demand Analysis, Market Share, Market Report 2020-2025. Accessed on 23rd Sept 2020 (2019). https://www.industryarc.com/Report/211/Wireless-Sensor-Network-Market-Research-Report.html

  3. Majid, M.; Habib, S.; Javed, A.R.; Rizwan, M.; Srivastava, G.; Gadekallu, T.R.; Lin, J.C.-W.: Applications of wireless sensor networks and internet of things frameworks in the industry revolution 4.0: a systematic literature review. Sensors 22(6) (2022)

  4. Kandris, D.; Nakas, C.; Vomvas, D.; Koulouras, G.: Applications of wireless sensor networks: an up-to-date survey. Appl. Syst. Innov. 3(1) (2020)

  5. Hussein, W.A.; Ali, B.M.; Rasid, M.; Hashim, F.: Smart geographical routing protocol achieving high qos and energy efficiency based for wireless multimedia sensor networks. Egypt. Inform. J. 23(2), 225–238 (2022). https://doi.org/10.1016/j.eij.2021.12.005

    Article  Google Scholar 

  6. The Thought Emporium: Building a Camera That Can See Wifi : Part 3 SUCCESS! FOULAB. Accessed on 4th Mar 2021 (2018). https://github.com/FOULAB/Project-COGSWORTH

  7. Kumar, V.; Kumar, A.: A novel approach for boosting base station anonymity in a wsn. Int. J. Adv. Comput. Sci. Appl. 8(9), 114–120 (2017)

    Google Scholar 

  8. Jian, Y.; Chen, S.; Zhang, Z.; Zhang, L.: Protecting receiver-location privacy in wireless sensor networks. In: IEEE INFOCOM 2007—26th IEEE International Conference on Computer Communications, pp. 1955–1963. IEEE, Anchorage, AK, USA (2007). https://doi.org/10.1109/INFCOM.2007.227

  9. Kamat, P.; Zhang, Y.; Trappe, W.; Ozturk, C.: Enhancing source-location privacy in sensor network routing. In: Distributed Computing Systems, 2005. ICDCS 2005. Proceedings. 25th IEEE International Conference On, pp. 599–608. IEEE, Columbus, OH, USA (2005)

  10. Deng, J.; Han, R.; Mishra, S.: Countermeasures against traffic analysis attacks in wireless sensor networks. In: Security and Privacy for Emerging Areas in Communications Networks, 2005. SecureComm 2005. First International Conference On, pp. 113–126. IEEE, Athens, Greece (2005)

  11. Smets, P.: Data fusion in the transferable belief model. In: Third International Conference on Information Fusion, vol. 1, pp. 21–33. IEEE, Paris, France (2000)

  12. Siegel, A.F.: Chapter 6—probability: understanding random situations. In: Siegel, A.F. (ed.) Practical Business Statistics (Seventh Edition), 7th edn., pp. 131–161. Academic Press, Seattle, USA (2016). https://doi.org/10.1016/B978-0-12-804250-2.00006-7

  13. Huang, D.: On measuring anonymity for wireless mobile ad-hoc networks. In: 31st IEEE Conference on Local Computer Networks, pp. 779–786. IEEE, Tampa, FL, USA (2006). https://doi.org/10.1109/LCN.2006.322037

  14. Baroutis, N.; Younis, M.: Load-conscious maximization of base-station location privacy in wireless sensor networks. Comput. Netw. 124, 126–139 (2017). https://doi.org/10.1016/j.comnet.2017.06.021

    Article  Google Scholar 

  15. Selman, B.; Levesque, H.J.; Mitchell, D.G.; et al.: A new method for solving hard satisfiability problems. In: AAAI, vol. 92, pp. 440–446. Association for the Advancement of Artificial Intelligence (AAAI), Menlo Park, CA, USA (1992)

  16. Acharya, U.; Younis, M.: Increasing base-station anonymity in wireless sensor networks. Ad Hoc Netw. 8(8), 791–809 (2010). https://doi.org/10.1016/j.adhoc.2010.03.001

    Article  Google Scholar 

  17. Jiang, J.; Han, G.; Wang, H.; Guizani, M.: A survey on location privacy protection in wireless sensor networks. J. Netw. Comput. Appl. 125, 93–114 (2019). https://doi.org/10.1016/j.jnca.2018.10.008

    Article  Google Scholar 

  18. Aliyu, F.; Umar, S.; Alkharobi, T.; Baroudi, U.: Improving base station anonymity using data funneling and pid controlled fake packets. In: 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM), pp. 1–6. IEEE (2019)

  19. Al-Nasser, A.; Almesaeed, R.; Al-Junaid, H.: A comprehensive survey on routing and security in mobile wireless sensor networks. Int. J. Electron. Telecommun. 67, 491–492 (2021)

    Google Scholar 

  20. Ebrahimi, Y.; Younis, M.: Using deceptive packets to increase base-station anonymity in wireless sensor network. In: 7th International Wireless Communications and Mobile Computing Conference, pp. 842–847. IEEE, Istanbul, Turkey (2011). https://doi.org/10.1109/IWCMC.2011.5982656

  21. Xu, N.: A survey of sensor network applications. IEEE Commun. Mag. 40(8), 102–114 (2002)

    Article  Google Scholar 

  22. Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E.: A survey on sensor networks. IEEE Commun. Mag. 40(8), 102–114 (2002)

    Article  Google Scholar 

  23. Ozturk, C.; Zhang, Y.; Trappe, W.: Source-location privacy in energy-constrained sensor network routing. In: 2nd ACM Workshop on Security of Ad Hoc and Sensor Networks, pp. 88–93. ACM, New York, USA (2004)

  24. Chen, Y.; Xu, W.; Trappe, W.; Zhang, Y.: Enhancing source-location privacy in sensor network routing. In: Securing Emerging Wireless Systems, pp. 1–23. Springer, Columbus, OH, USA (2009)

  25. Elkhail, A.A.; Baroudi, U.; Younis, M.: Wsn routing protocols: anonymity prospective analysis. In: 2022 14th International Conference on Computational Intelligence and Communication Networks (CICN), pp. 819–823 (2022). https://doi.org/10.1109/CICN56167.2022.10008348

  26. Xi, Y.; Schwiebert, L.; Shi, W.: Preserving source location privacy in monitoring-based wireless sensor networks. In: Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th International, p. 8. IEEE, Rhodes, Greece (2006)

  27. Luo, X.; Ji, X.; Park, M.S.: Location privacy against traffic analysis attacks in wireless sensor networks. In: 2010 International Conference on Information Science and Applications, pp. 1–6. IEEE, Seoul, Korea (South) (2010). https://doi.org/10.1109/ICISA.2010.5480564

  28. Kumar, V.; Kumar, A.; Singh, M.: Boosting anonymity in wireless sensor networks. In: 4th International Conference on Signal Processing, Computing and Control (ISPCC), pp. 344–348. IEEE, Solan, India (2017). https://doi.org/10.1109/ISPCC.2017.8269701

  29. Ebrahimi, Y.; Younis, M.: Traffic analysis through spatial and temporal correlation: threat and countermeasure. IEEE Access 9, 54126–54151 (2021). https://doi.org/10.1109/ACCESS.2021.3070841

    Article  Google Scholar 

  30. Ebrahimi, Y.; Younis, M.: Energy-aware cross-layer technique for countering traffic analysis attacks on wireless sensor network. IEEE Access 10, 131036–131052 (2022). https://doi.org/10.1109/ACCESS.2022.3230362

    Article  Google Scholar 

  31. Long, J.; Liu, A.; Dong, M.; Li, Z.: An energy-efficient and sink-location privacy enhanced scheme for wsns through ring based routing. J. Parallel Distrib. Comput. 81–82, 47–65 (2015). https://doi.org/10.1016/j.jpdc.2015.04.003

    Article  Google Scholar 

  32. Han, G.; Xu, M.; He, Y.; Jiang, J.; Ansere, J.A.; Zhang, W.: A dynamic ring-based routing scheme for source location privacy in wireless sensor networks. Inf. Sci. 504, 308–323 (2019). https://doi.org/10.1016/j.ins.2019.07.028

    Article  Google Scholar 

  33. Stevenson, A.: Oxford Dictionary of English. Oxford Dictionary of English. OUP Oxford, UK (2010). https://books.google.com.sa/books?id=anecAQAAQBAJ

  34. Chambers, A.: The Chambers Dictionary. Allied Chambers (India) limited, India (2002). https://books.google.com.sa/books?id=pz2ORay2HWoC

  35. Bangash, Y.A.; Zeng, L.-F.; Feng, D.: Mimibs: Mimicking base-station to provide location privacy protection in wireless sensor networks. J. Comput. Sci. Technol. 32(5), 991–1007 (2017)

    Article  Google Scholar 

  36. Alsemairi, S.S.: Aaiba: attracting an adversary for increasing base-station anonymity in wireless sensor networks. In: 2022 32nd International Telecommunication Networks and Applications Conference (ITNAC), pp. 367–372 (2022). https://doi.org/10.1109/ITNAC55475.2022.9998341

  37. Aliyu, F.; Umar, S.; Alkharobi, T.; Baroudi, U.: Improving base station anonymity using data funneling and pid controlled fake packets. In: 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM), pp. 1–6. IEEE, Manama, Bahrain (2019). https://doi.org/10.1109/MENACOMM46666.2019.8988581

  38. Wang, L.: PID Control System Design and Automatic Tuning Using MATLAB/Simulink. Wiley - IEEE. Wiley, West Sussex, UK (2020). https://books.google.com.sa/books?id=1NXKDwAAQBAJ

  39. Chen, D.; Varshney, P.K.: A survey of void handling techniques for geographic routing in wireless networks. IEEE Commun. Surv. Tutor. 9(1), 50–67 (2007). https://doi.org/10.1109/COMST.2007.358971

    Article  Google Scholar 

  40. Cadger, F.; Curran, K.; Santos, J.; Moffett, S.: A survey of geographical routing in wireless ad-hoc networks. IEEE Commun. Surv. Tutor. 15(2), 621–653 (2013). https://doi.org/10.1109/SURV.2012.062612.00109

    Article  Google Scholar 

  41. Boulaiche, M.; Younis, M.: Increasing base-station anonymity through illusive void formation. Int. J. Commun. Netw. Distrib. Syst. 25(4), 433–460 (2020)

    Google Scholar 

  42. Hussien, Z.W.; Qawasmeh, D.S.; Shurman, M.: Msclp: multi-sinks cluster-based location privacy protection scheme in wsns for iot. In: 2020 32nd International Conference on Microelectronics (ICM), pp. 1–4. IEEE, Aqaba, Jordan (2020). https://doi.org/10.1109/ICM50269.2020.9331785

  43. Christopher, V.B.; Jasper, J.: Jellyfish dynamic routing protocol with mobile sink for location privacy and congestion avoidance in wireless sensor networks. J. Syst. Archit. 112, 101840–101853 (2021). https://doi.org/10.1016/j.sysarc.2020.101840

    Article  Google Scholar 

  44. Ahmed, A.A.; Fisal, N.F.: Secure real-time routing protocol with load distribution in wireless sensor networks. Secur. Commun. Netw. 4(8), 839–869 (2011)

    Article  Google Scholar 

  45. Skiena, S.: Dijkstra’s Algorithm, pp. 225–227. Basic Books, Washington, USA (1990)

  46. Joseph, K.: DIJKSTRA Calculate Minimum Costs and Paths using Dijkstra’s Algorithm. Mathworks (2015). https://www.mathworks.com/matlabcentral/fileexchange/20025-dijkstra-s-minimum-cost-path-algorithm

  47. Lcady: PID process control, a "Cruise Control" example. CodeProject. Accessed on 28th Jan 2020 (2009). https://www.codeproject.com/Articles/36459/PID-process-control-a-Cruise-Control-example

  48. Leigh, J.; Leigh, J.R.; of Electrical Engineers, I.: Control Theory. Control Theory, pp. 32–33. Institution of Electrical Engineers, United Kingdom (2004). https://books.google.com.sa/books?id=3P1zTw1HmyIC

  49. Bakshi, U.A.: 3. Chapter-3: Transfer Function Models of Linear Systems. Technical Publications, India (2020). https://books.google.com.sa/books?id=ogMbEAAAQBAJ

  50. Bill, M.; JD, T.: Control Tutorials for MATLAB and Simulink—Introduction: System Analysis. MATLAB(R) 9.2 (2018). http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction &section=SystemAnalysis

  51. Bhattacharyya, S.P.; Datta, A.; Keel, L.H.: 1. PID Controllers: AN Overview of Classical Theory. Automation and Control Engineering. CRC Press, United States (2018). https://books.google.com.sa/books?id=2vK4aqHqW1IC

  52. Jain, V.: Types of controllers: proportional integral and derivative controllers. electrical4u.com (2021). https://www.electrical4u.com/types-of-controllers-proportional-integral-derivative-controllers/

  53. Mehta, K.; Liu, D.; Wright, M.: Location privacy in sensor networks against a global eavesdropper. In: IEEE International Conference on Network Protocols, pp. 314–323. IEEE, Beijing, China (2007)

  54. Mehta, K.; Liu, D.; Wright, M.: Protecting location privacy in sensor networks against a global eavesdropper. IEEE Trans. Mob. Comput. 11(2), 320–336 (2012)

    Article  Google Scholar 

  55. Yi, C.: Learning PID Tuning I: Process Reaction Curve. MATLABWorks (2008). https://www.mathworks.com/matlabcentral/fileexchange/16661-learning-pid-tuning-i--process-reaction-curve?focused=5095699 &tab=example

  56. Korsane, D.T.; Yadav, V.; Raut, K.H.: Pid tuning rules for first order plus time delay system. Int. J. Innov. Res. Electr. Instrum. Control Eng. 2(1), 582–586 (2014)

    Google Scholar 

  57. Petrovic, D.; Shah, R.C.; Ramchandran, K.; Rabaey, J.: Data funneling: routing with aggregation and compression for wireless sensor networks. In: IEEE International Workshop on Sensor Network Protocols and Applications, pp. 156–162. IEEE, Anchorage, AK, USA (2003)

  58. Graf, J.: PID Control: Ziegler-Nichols Tuning. CreateSpace Independent Publishing Platform, Germany (2013). https://books.google.com.sa/books?id=xF2UngEACAAJ

  59. Bequette, B.W.: Process Control: Modeling, Design, and Simulation. Prentice-Hall International Series in the Physical and Chemi. Prentice Hall PTR, New Jersey, India (2003). https://books.google.com.sa/books?id=PdjHYm5e9d4C

  60. Nguyen, T.-T.; Pan, J.-S.; Dao, T.-K.; Chu, S.-C.: Load balancing for mitigating hotspot problem in wireless sensor network based on enhanced diversity pollen. J. Inf. Telecommun. 2(1), 91–106 (2018)

    Google Scholar 

Download references

Funding

This research was funded by the Deanship of Scientific Research (DSR) at King Fahd University of Petroleum and Minerals, under the grant IN171025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uthman Baroudi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliyu, F., Umar, S., Baroudi, U. et al. Optimizing Base Station’s Anonymity with PID-Controlled Fake Packets and Data Aggregation. Arab J Sci Eng 49, 4139–4156 (2024). https://doi.org/10.1007/s13369-023-08316-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08316-4

Keywords

Navigation