Skip to main content

Advertisement

Log in

Feasibility of Complete Substitution of Petroleum Diesel with Biofuels in Diesel Engines: An Experimental Assessment of Combustion, Performance, and Emissions Characteristics

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Biodiesel is a good substitute for fossil diesel fuel. However, the high viscosity, low volatility, and poor cold flow properties restrain its use at a high blending ratio or pure in diesel engines. In this regard, blending low-viscosity and high-volatility biofuel with biodiesel is a feasible method to eliminate the disadvantages of biodiesel. It is a cost-effective solution rather than making engine modifications. In this study, the applicability of high-proportion biodiesel (B90) in an existing diesel engine is experimentally investigated by adding methyl acetate and ethyl acetate to biodiesel. An improvement in kinematic viscosity and cold filter plugging point temperature is observed for acetate-added biodiesel fuels. Methyl acetate and ethyl acetate included biofuels result in higher thermal efficiency and lower pollutant emission than sole biodiesel. But their engine performance is still poor compared to diesel fuel. Brake-specific fuel consumption is increased by 24.01–32.29% with acetate-added biodiesel fuels compared to diesel fuel. However, their favorable combustion characteristics increase engine thermal efficiency by up to 3.58% compared to neat biodiesel. CO, HC, NO concentrations, and smoke opacity reduce with acetate-blended biodiesel fuels compared to neat biodiesel. Both methyl acetate and ethyl acetate simultaneously reduce NO emissions and smoke opacity. It is an essential finding of this study, indicating that these oxygenated additives can potentially improve the NOX-PM trade-off in diesel engines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Availability of data and materials

The data generated in this current study are available from the corresponding author on reasonable request.

Abbreviations

D :

Neat diesel fuel

B100:

Neat biodiesel

CI:

Compression ignition

EGT:

Exhaust gas temperature

EA10:

10% Ethyl acetate + 90% biodiesel blend (v/v)

MA10:

10% Methyl acetate + 90% biodiesel blend (v/v)

aTDC:

After the top dead center

bTDC:

Before the top dead center

BSFC:

Brake-specific fuel consumption (kg/kWh)

BSEC:

Brake-specific energy consumption (MJ/kWh)

BTE:

Brake thermal efficiency (%)

CO:

Carbon monoxide

CO2 :

Carbon dioxide

HC:

Hydrocarbon

ICE:

Internal combustion engine

NOX :

Nitrogen oxide

SI:

Spark ignition

References

  1. Reitz, R.D.: Directions in internal combustion engine research. Combust. Flame 160, 1–8 (2013). https://doi.org/10.1016/j.combustflame.2012.11.002

    Article  CAS  ADS  Google Scholar 

  2. Dallmann, T.; Menon, A.: Technology pathways for diesel engines used in non-road vehicles and equipment (2016)

  3. Santos, N.D.S.A.; Roso, V.R.; Malaquias, A.C.T.; Baeta, J.G.C.: Internal combustion engines and biofuels: examining why this robust combination should not be ignored for future sustainable transportation. Renew. Sustain. Energy Rev. 148, 111292 (2021)

    Article  Google Scholar 

  4. Reitz, R.D.; Ogawa, H.; Payri, R.; Fansler, T.; Kokjohn, S.; Moriyoshi, Y., et al.: IJER editorial: the future of the internal combustion engine. Int. J. Eng. Res. 21, 3–10 (2020). https://doi.org/10.1177/1468087419877990

    Article  Google Scholar 

  5. Zhao, F.; Chen, K.; Hao, H.; Liu, Z.: Challenges, potential and opportunities for internal combustion engines in China. Sustainability 12, 4955 (2020)

    Article  CAS  Google Scholar 

  6. Mustayen, A.G.M.B.; Rasul, M.G.; Wang, X.; Negnevitsky, M.; Hamilton, J.M.: Remote areas and islands power generation: a review on diesel engine performance and emission improvement techniques. Energy Convers. Manag. 260, 115614 (2022). https://doi.org/10.1016/j.enconman.2022.115614

    Article  CAS  Google Scholar 

  7. Setiyo, M.; Yuvenda, D.; Samuel, O.D.: The concise latest report on the advantages and disadvantages of pure biodiesel (B100) on engine performance: literature review and bibliometric analysis. Indones. J. Sci. Technol. 6, 469–490 (2021)

    Article  Google Scholar 

  8. Hassan, M.H.; Kalam, M.A.: An overview of biofuel as a renewable energy source: development and challenges. Proc. Eng. 56, 39–53 (2013). https://doi.org/10.1016/j.proeng.2013.03.087

    Article  Google Scholar 

  9. Pandey, R.K.; Rehman, A.; Sarviya, R.M.: Impact of alternative fuel properties on fuel spray behavior and atomization. Renew. Sustain. Energy Rev. 16, 1762–1778 (2012). https://doi.org/10.1016/j.rser.2011.11.010

    Article  CAS  Google Scholar 

  10. Nandakumar, C.; Saravanan, C.G.; Raman, V.; Vikneswaran, M.; Sasikala, J.; Josephin, J.S.F., et al.: Ternary gasoline–pomegranate peel oil (PPO)-tertiary butyl alcohol (TBA) blend as an enabler to improve the spark-ignited engine performance and emissions. Fuel 329, 125396 (2022)

    Article  CAS  Google Scholar 

  11. Çakmak, A.; Özcan, H.: Oxygenated fuel additives to gasoline. J. Polytech. 21, 831–840 (2018). https://doi.org/10.2339/politeknik.457956

    Article  Google Scholar 

  12. Niculescu, R.; Clenci, A.; Iorga-Siman, V.: Review on the use of diesel–biodiesel–alcohol blends in compression ıgnition engines. Energies (2019). https://doi.org/10.3390/en12071194

    Article  Google Scholar 

  13. Ma, Q.; Zhang, Q.; Liang, J.; Yang, C.; Materials, A.: The performance and emissions characteristics of diesel/biodiesel/alcohol blends in a diesel engine. Energy Rep. 7, 1016–1024 (2021). https://doi.org/10.1016/j.egyr.2021.02.027

    Article  Google Scholar 

  14. Yilmaz, N.; Atmanli, A.; Vigil, F.M.: Quaternary blends of diesel, biodiesel, higher alcohols and vegetable oil in a compression ignition engine. Fuel 212, 462–469 (2018). https://doi.org/10.1016/j.fuel.2017.10.050

    Article  CAS  Google Scholar 

  15. Oni, B.A.; Sanni, S.E.; Alaba, P.A.; Hessien, M.M.; El-Bahy, Z.M.: Investigating the performance of acetylated diethyl ether–camelina sativa biodiesel as fuel in compression ignition engine. Energy Ecol. Environ. 7, 281–295 (2022). https://doi.org/10.1007/s40974-021-00230-5

    Article  CAS  Google Scholar 

  16. Aydın, S.: Detailed evaluation of combustion, performance and emissions of ethyl proxitol and methyl proxitol-safflower biodiesel blends in a power generator diesel engine. Fuel 270, 117492 (2020). https://doi.org/10.1016/J.FUEL.2020.117492

    Article  Google Scholar 

  17. Ağbulut, Ü.; Yeşilyurt, M.K.; Sarıdemir, S.: Wastes to energy: ımproving the poor properties of waste tire pyrolysis oil with waste cooking oil methyl ester and waste fusel alcohol—a detailed assessment on the combustion, emission, and performance characteristics of a CI engine. Energy 222, 119942 (2021). https://doi.org/10.1016/j.energy.2021.119942

    Article  CAS  Google Scholar 

  18. Atmanli, A.; Yilmaz, N.: An experimental assessment on semi-low temperature combustion using waste oil biodiesel/C3–C5 alcohol blends in a diesel engine. Fuel 260, 116357 (2020). https://doi.org/10.1016/j.fuel.2019.116357

    Article  CAS  Google Scholar 

  19. Aguado-Deblas, L.; Estevez, R.; Hidalgo-Carrillo, J.; Bautista, F.M.; Luna, C.; Calero, J., et al.: Outlook for direct use of sunflower and castor oils as biofuels in compression ıgnition diesel engines, being part of diesel/ethyl acetate/straight vegetable oil triple blends. Energies (2020). https://doi.org/10.3390/en13184836

    Article  Google Scholar 

  20. Çakmak, A.: Improvement of exhaust emissions in a diesel engine with the addition of an oxygenated additive to diesel-biodiesel blends. Energetika 68, 79–90 (2022). https://doi.org/10.6001/energetika.v68i1.4859

    Article  Google Scholar 

  21. Londhe, H.; Luo, G.; Park, S.; Kelley, S.S.; Fang, T.: Testing of anisole and methyl acetate as additives to diesel and biodiesel fuels in a compression ignition engine. Fuel 246, 79–92 (2019). https://doi.org/10.1016/j.fuel.2019.02.079

    Article  CAS  Google Scholar 

  22. Mukhtar, A.; Saqib, S.; Lin, H.; Hassan Shah, M.U.; Ullah, S.; Younas, M., et al.: Current status and challenges in the heterogeneous catalysis for biodiesel production. Renew. Sustain Energy Rev. 157, 112012 (2022). https://doi.org/10.1016/j.rser.2021.112012

    Article  CAS  Google Scholar 

  23. Biyodizel Sanayi Derneği.: Biyodizel Endüstri Raporu, İzmir (2019)

  24. FAO.: World Corn Oil Production by Country (2019)

  25. Pryshliak, N.; Tokarchuk, D.: Socio-economic and environmental benefits of biofuel production development from agricultural waste in Ukraine. Environ. Socio-econ. Stud. 8, 18–27 (2020)

    Article  Google Scholar 

  26. Gülüm, M.; Bilgin, A.; Çakmak, A.: Comparison of optimum reaction parameters of corn oil biodiesels produced by using sodium hydroxide (NAOH) and potassium hydroxide (KOH) | Sodyum hidroksit (NaOH) ve potasyum hidroksit (KOH) kullanilarak üretilen misir yaʇi biyodizellerinin optimum reaksi. J. Fac. Eng. Archit. Gazi Univ. 3, 10 (2015)

    Google Scholar 

  27. Dabbagh, H.A.; Ghobadi, F.; Ehsani, M.R.; Moradmand, M.; Dabbagh, H.A.; Ghobadi, F.; Ehsani, M.R.; Moradmand, M.: The influence of ester additives on the properties of gasoline. Fuel 104, 216–223 (2013). https://doi.org/10.1016/j.fuel.2012.09.056

    Article  CAS  Google Scholar 

  28. Cakmak, A.; Kapusuz, M.; Ganiyev, O.; Ozcan, H.: Effects of methyl acetate as oxygenated fuel blending on performance and emissions of SI engine. Environ. Clim. Technol. 22, 55–68 (2018). https://doi.org/10.2478/rtuect-2018-0004

    Article  Google Scholar 

  29. Çakmak, A.; Kapusuz, M.; Özcan, H.: Experimental research on ethyl acetate as novel oxygenated fuel in the spark-ignition (SI) engine. Energy Sour. Part A Recov. Util. Environ. Eff. 45, 178–193 (2023). https://doi.org/10.1080/15567036.2020.1736216

    Article  CAS  Google Scholar 

  30. PubChem.: Ethyl Acetate 2022. https://pubchem.ncbi.nlm.nih.gov/compound/ethyl_acetate#section=Top. Accessed 12 Sept 2022

  31. Haynes, W.M.: CRC Handbook of Chemistry and Physics, 95th edn. CRC Press (2014)

    Book  Google Scholar 

  32. Contino, F.; Foucher, F.; Mounaïm-Rousselle, C.; Jeanmart, H.: Experimental characterization of ethyl acetate, ethyl propionate, and ethyl butanoate in a homogeneous charge compression ignition engine. Energy Fuels 25, 998–1003 (2011). https://doi.org/10.1021/ef101602q

    Article  CAS  Google Scholar 

  33. Heywood, J.B.: Internal Combustion Engine Fundamentals. McGraw-Hill, New York (1988)

    Google Scholar 

  34. Maurya, R.K.; Maurya, L.: Reciprocating Engine Combustion Diagnostics. Springer (2019)

    Book  Google Scholar 

  35. Yuan, C.; Han, C.; Liu, Y.; He, Y.; Shao, Y.; Jian, X.: Effect of hydrogen addition on the combustion and emission of a diesel free-piston engine. Int. J. Hydrog. Energy 43, 13583–13593 (2018). https://doi.org/10.1016/j.ijhydene.2018.05.038

    Article  CAS  Google Scholar 

  36. Lapuerta, M.; Agudelo, J.R.; Prorok, M.; Boehman, A.L.: Bulk Modulus of compressibility of diesel/biodiesel/HVO blends. Energy Fuels 26, 1336–1343 (2012). https://doi.org/10.1021/ef201608g

    Article  CAS  Google Scholar 

  37. Jamrozik, A.; Tutak, W.; Grab-Rogaliński, K.: Combustion stability, performance and emission characteristics of a CI engine fueled with diesel/n-butanol blends. Energies 14, 2817 (2021)

    Article  CAS  Google Scholar 

  38. Veza, I.; Irianto, T.; Hoang, A.; Yusuf, A.A.; Herawan, S.G.; Soudagar, M.E.M., et al.: Effects of acetone-butanol-ethanol (ABE) addition on HCCI-DI engine performance, combustion and emission. Fuel 333, 126377 (2023). https://doi.org/10.1016/j.fuel.2022.126377

    Article  CAS  Google Scholar 

  39. Han, J.; He, W.; Somers, L.M.T.: Experimental ınvestigation of performance and emissions of ethanol and n-butanol fuel blends in a heavy-duty diesel engine. Front. Mech. Eng. (2020). https://doi.org/10.3389/fmech.2020.00026

    Article  Google Scholar 

  40. Pulkrabek, W.W.: Engineering Fundamentals of the Internal Combustion Engine, 2nd edn. Published by Pearson (2004)

    Google Scholar 

  41. Shahabuddin, M.; Liaquat, A.M.; Masjuki, H.H.; Kalam, M.A.; Mofijur, M.: Ignition delay, combustion and emission characteristics of diesel engine fueled with biodiesel. Renew. Sustain. Energy Rev. 21, 623–632 (2013). https://doi.org/10.1016/j.rser.2013.01.019

    Article  CAS  Google Scholar 

  42. Finesso, R.; Spessa, E.: Ignition delay prediction of multiple injections in diesel engines. Fuel 119, 170–190 (2014). https://doi.org/10.1016/j.fuel.2013.11.040

    Article  CAS  Google Scholar 

  43. Prante, G.A.F.; Santos, N.D.S.A.; Martins, M.E.S.: Feasibility of replacing diesel with ethanol blended with biodiesel and diethyl-ether blends in a compression ignition engine. J. Braz. Soc. Mech. Sci. Eng. 45, 60 (2023). https://doi.org/10.1007/s40430-022-03995-w

    Article  CAS  Google Scholar 

  44. Tse, H.; Leung, C.W.; Cheung, C.S.: Investigation on the combustion characteristics and particulate emissions from a diesel engine fueled with diesel-biodiesel-ethanol blends. Energy 83, 343–350 (2015). https://doi.org/10.1016/j.energy.2015.02.030

    Article  CAS  Google Scholar 

  45. Nour, M.; Elseesy, A.I.; Attia, A.; Li, X.; Nada, S.: Adding n-butanol, n-heptanol, and n-octanol to improve vaporization, combustion, and emission characteristics of diesel/used frying oil biodiesel blends in DICI engine. Environ. Prog. Sustain. Energy 40, e13549 (2021)

    Article  CAS  Google Scholar 

  46. Mohan, B.; Yang, W.; Tay, K.L.; Yu, W.: Experimental study of spray characteristics of biodiesel derived from waste cooking oil. Energy Convers. Manag. 88, 622–632 (2014). https://doi.org/10.1016/j.enconman.2014.09.013

    Article  CAS  Google Scholar 

  47. Som, S.; Longman, D.E.; Ramírez, A.I.; Aggarwal, S.K.: A comparison of injector flow and spray characteristics of biodiesel with petrodiesel. Fuel 89, 4014–4024 (2010). https://doi.org/10.1016/j.fuel.2010.05.004

    Article  CAS  Google Scholar 

  48. Ashok, B.; Nanthagopal, K.; Darla, S.; Chyuan, O.H.; Ramesh, A.; Jacob, A., et al.: Comparative assessment of hexanol and decanol as oxygenated additives with calophyllum inophyllum biodiesel. Energy 173, 494–510 (2019). https://doi.org/10.1016/j.energy.2019.02.077

    Article  Google Scholar 

  49. Raman, L.A.; Deepanraj, B.; Rajakumar, S.; Sivasubramanian, V.: Experimental investigation on performance, combustion and emission analysis of a direct injection diesel engine fuelled with rapeseed oil biodiesel. Fuel 246, 69–74 (2019). https://doi.org/10.1016/j.fuel.2019.02.106

    Article  CAS  Google Scholar 

  50. Varuvel, E.G.; Mrad, N.; Tazerout, M.; Aloui, F.: Experimental analysis of biofuel as an alternative fuel for diesel engines. Appl. Energy 94, 224–231 (2012). https://doi.org/10.1016/j.apenergy.2012.01.067

    Article  CAS  ADS  Google Scholar 

  51. Çakmak, A.; Bilgin, A.: Exergy and energy analysis with economic aspects of a diesel engine running on biodiesel-diesel fuel blends. Int. J. Exergy 24, 151 (2017). https://doi.org/10.1504/IJEX.2017.087700

    Article  Google Scholar 

  52. Yesilyurt, M.K.; Cakmak, A.: An extensive investigation of utilization of a C8 type long-chain alcohol as a sustainable next-generation biofuel and diesel fuel blends in a CI engine—the effects of alcohol infusion ratio on the performance, exhaust emissions, and combustion characte. Fuel 305, 121453 (2021). https://doi.org/10.1016/j.fuel.2021.121453

    Article  CAS  Google Scholar 

  53. El-Seesy, A.I.; Hassan, H.; Ibraheem, L.; He, Z.; Soudagar, M.E.M.: Combustion, emission, and phase stability features of a diesel engine fueled by Jatropha/ethanol blends and n-butanol as co-solvent. Int. J. Green Energy 17, 793–804 (2020). https://doi.org/10.1080/15435075.2020.1798770

    Article  CAS  Google Scholar 

  54. Fu, W.; Li, F.; Meng, K.; Liu, Y.; Shi, W.; Lin, Q.: Experiment and analysis of spray characteristics of biodiesel blending with di-n-butyl ether in a direct injection combustion chamber. Energy 185, 77–89 (2019). https://doi.org/10.1016/j.energy.2019.06.069

    Article  CAS  Google Scholar 

  55. Mollenhauer, K.; Tschöke, H.; Johnson, K.G.E.: Handbook of Diesel Engines, Vol. 1. Springer, Berlin (2010)

    Book  Google Scholar 

  56. Puškár, M.; Živčák, J.; Lavčák, M.; Šoltésová, M.; Kopas, M.: Analysis of combustion conditions for sustainable dual-fuel mixtures. Sustainability 14, 13962 (2022)

    Article  Google Scholar 

  57. Mz, I.ŞI.K.: Comparative experimental investigation on the effects of heavy alcohols- safflower biodiesel blends on combustion, performance and emissions in a power generator diesel engine. Appl. Therm. Eng. 184, 116142 (2021). https://doi.org/10.1016/j.applthermaleng.2020.116142

    Article  CAS  Google Scholar 

  58. Banapurmath, N.R.; Tewari, P.G.; Hosmath, R.S.: Performance and emission characteristics of a DI compression ignition engine operated on Honge, Jatropha and sesame oil methyl esters. Renew. Energy 33, 1982–1988 (2008). https://doi.org/10.1016/j.renene.2007.11.012

    Article  CAS  Google Scholar 

  59. Yilmaz, N.; Ileri, E.; Atmanli, A.: Performance of biodiesel/higher alcohols blends in a diesel engine. Int. J. Energy Res. 40, 1134–1143 (2016)

    Article  CAS  Google Scholar 

  60. Varatharajan, K.; Cheralathan, M.: Influence of fuel properties and composition on NOx emissions from biodiesel powered diesel engines: a review. Renew. Sustain. Energy Rev. 16, 3702–3710 (2012). https://doi.org/10.1016/j.rser.2012.03.056

    Article  CAS  Google Scholar 

  61. Masum, B.M.; Masjuki, H.H.; Kalam, M.A.; RizwanulFattah, I.M.; Palash, S.; Abedin, M.J.: Effect of ethanol-gasoline blend on NOx emission in SI engine. Renew. Sustain. Energy Rev. 24, 209–222 (2013). https://doi.org/10.1016/j.rser.2013.03.046

    Article  CAS  Google Scholar 

  62. Stone, R.: Introduction to İnternal Combustion Engines, 3rd edn. Macmillan Publishers Limited, London (1999) https://doi.org/10.1007/978-1-349-14916-2

    Book  Google Scholar 

  63. Turns, S.R.: Introduction to Combustion, Vol. 287. McGraw-Hill Companies (1996)

    Google Scholar 

  64. Krishnakumar, S.; Khan, T.M.Y.; Rajashekhar, C.R.; Soudagar, M.E.; Afzal, A.; Elfasakhany, A.: Influence of graphene nano particles and antioxidants with waste cooking oil biodiesel and diesel blends on engine performance and emissions. Energies 14, 4306 (2021)

    Article  CAS  Google Scholar 

  65. Soloiu, V.; Duggan, M.; Harp, S.; Vlcek, B.; Williams, D.: PFI (port fuel injection) of n-butanol and direct injection of biodiesel to attain LTC (low-temperature combustion) for low-emissions idling in a compression engine. Energy 52, 143–154 (2013). https://doi.org/10.1016/j.energy.2013.01.023

    Article  CAS  Google Scholar 

  66. Mukhopadhyay, P.; Chakraborty, R.: LCA of sustainable biodiesel production from fried Borassus flabellifer oil in energy-proficient reactors: Impact assessment of multi fuel-additives on pour point, NOx and engine performance. Sustain. Energy Technol. Assess. 44, 100994 (2021). https://doi.org/10.1016/j.seta.2021.100994

    Article  Google Scholar 

  67. Olugasa, T.T.; Adekanbi, M.L.; Fasogbon, S.K.: Performance and emission characteristics of compression ignition engine running on a blend of cashew nut shell liquid and biodiesel produced from orange peel. Eur. J. Sustain. Dev. Res. 6, em0197 (2022)

    Article  Google Scholar 

  68. Abdalla, I.E.: Experimental studies for the thermo-physiochemical properties of biodiesel and its blends and the performance of such fuels in a compression ignition engine. Fuel 212, 638–655 (2018). https://doi.org/10.1016/j.fuel.2017.10.064

    Article  CAS  Google Scholar 

  69. Çakmak, A.; Yeşilyurt, M.K.; Erol, D.; Doğan, B.: The experimental investigation on the impact of n-octanol in the compression-ignition engine operating with biodiesel/diesel fuel blends: exergy, exergoeconomic, environmental analyses. J. Therm. Anal. Calorim. (2022). https://doi.org/10.1007/s10973-022-11357-w

    Article  Google Scholar 

  70. Benajes, J.; Martin, J.; Garcia, A.; Villalta, D.; Warey, A.; Domenech, V., et al.: An investigation of radiation heat transfer in a light-duty diesel engine. SAE Int. J. Eng. 8, 2199–2212 (2015)

    Article  Google Scholar 

  71. Benajes, J.; Martín, J.; García, A.; Villalta, D.; Warey, A.: In-cylinder soot radiation heat transfer in direct-injection diesel engines. Energy Convers. Manag. 106, 414–427 (2015). https://doi.org/10.1016/j.enconman.2015.09.059

    Article  CAS  Google Scholar 

  72. Vigneswaran, R.; Balasubramanian, D.; Sastha, B.D.S.: Performance, emission and combustion characteristics of unmodified diesel engine with titanium dioxide (TiO2) nano particle along with water-in-diesel emulsion fuel. Fuel 285, 119115 (2021). https://doi.org/10.1016/j.fuel.2020.119115

    Article  CAS  Google Scholar 

  73. Asokan, M.A.; Senthur Prabu, S.; Bade, P.K.K.; Nekkanti, V.M.; Gutta, S.S.G.: Performance, combustion and emission characteristics of juliflora biodiesel fuelled DI diesel engine. Energy 173, 883–892 (2019). https://doi.org/10.1016/j.energy.2019.02.075

    Article  CAS  Google Scholar 

  74. Balasubramanian, D.; Hoang, A.T.; Papla Venugopal, I.; Shanmugam, A.; Gao, J.; Wongwuttanasatian, T.: Numerical and experimental evaluation on the pooled effect of waste cooking oil biodiesel/diesel blends and exhaust gas recirculation in a twin-cylinder diesel engine. Fuel 287, 119815 (2021). https://doi.org/10.1016/j.fuel.2020.119815

    Article  CAS  Google Scholar 

  75. Yoro, K.O.; Daramola, M.O.: Chapter 1-CO2 emission sources, greenhouse gases, and the global warming effect. In: Rahimpour, M.R.; Farsi, M. (Eds.) Makarem MABT-A in CC, pp. 3–28. Woodhead Publishing (2020). https://doi.org/10.1016/B978-0-12-819657-1.00001-3

    Chapter  Google Scholar 

  76. Srivastava, R.K.; Shetti, N.P.; Reddy, K.R.; Kwon, E.E.; Nadagouda, M.N.; Aminabhavi, T.M.: Biomass utilization and production of biofuels from carbon neutral materials. Environ. Pollut. 276, 116731 (2021). https://doi.org/10.1016/j.envpol.2021.116731

    Article  CAS  PubMed  Google Scholar 

  77. Çakmak, A.: Emissions improvement of a diesel engine fuelled with B20 through using oxygenated blending component. In: 18th International Conference on Young Science Energy Natural Science Issues (CYSENI 2022), pp. 103–104. Lithuanian Energy Institute, Lithuania (2022)

  78. Dhana Raju, V.; Kishore, P.S.; Nanthagopal, K.; Ashok, B.: An experimental study on the effect of nanoparticles with novel tamarind seed methyl ester for diesel engine applications. Energy Convers. Manag. 164, 655–666 (2018). https://doi.org/10.1016/j.enconman.2018.03.032

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

AÇ contributed to conceptualization, performing experiments, investigation, methodology, writing—original text, review, validation and editing of the manuscript, supervision.

Corresponding author

Correspondence to Abdülvahap Çakmak.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The author declares that he has no competing financial interests or personal relationships that could have appeared to influence this research.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 kb)

Supplementary file2 (DOCX 17 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çakmak, A. Feasibility of Complete Substitution of Petroleum Diesel with Biofuels in Diesel Engines: An Experimental Assessment of Combustion, Performance, and Emissions Characteristics. Arab J Sci Eng 49, 2367–2387 (2024). https://doi.org/10.1007/s13369-023-08252-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08252-3

Keywords

Navigation