Skip to main content
Log in

A New Wide Power Dynamic Range CMOS RF-to-DC Converter Using Body-Control Scheme

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

RF harvesting has attracted the attention to be used as a power source for low-power systems like IoT, wireless sensor nodes, and wearable devices. The RF rectifier has been the bottleneck in achieving efficient RF-DC systems. This paper presents a new CMOS RF-DC converter design based on a body-control approach to control the ON & OFF states of the transistors. The design is constructed using the cross-coupled differential-drive (CCDD) rectifier. The design uses less number of capacitors compared to some reported designs in the literature, which saves more active area. The proposed design has been implemented using 0.18 \(\mu \)m TSMC CMOS technology and verified using Cadence Virtuoso EDA. Thanks to the body-control scheme, the design achieves wide power dynamic range (PDR) of 20 dBm and a peak power conversion efficiency (PCE) of 71.6% for one stage of the proposed design. In addition, the proposed design obtains an output voltage of 0.47 V for 10 k\(\Omega \) and −15 dBm input power. It occupies an area of 0.0054 \(\textrm{mm}^2\). The proposed structure is also implemented using three stages to achieve higher output voltage. The 3-stage rectifier achieves a PDR of 17.4 dBm and a peak PCE of 71.2%, and an output voltage of 1.6 V for 100 k\(\Omega \) load and −14 dBm input power. Finally, the proposed RF-DC rectifier is compared with the state-of-the-art designs reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Khan, D.; Oh, S.J.; Shehzad, K.; Basim, M.; Verma, D.; Pu, Y.G.; Lee, M.; Hwang, K.C.; Yang, Y.; Lee, K.-Y.: An efficient reconfigurable rf-dc converter with wide input power range for rf energy harvesting. IEEE Access 8, 79310–79318 (2020). https://doi.org/10.1109/ACCESS.2020.2990662

    Article  Google Scholar 

  2. Chun, A.C.C.; Ramiah, H.; Mekhilef, S.: Wide power dynamic range cmos rf-dc rectifier for rf energy harvesting system: a review. IEEE Access 10, 23948–23963 (2022). https://doi.org/10.1109/ACCESS.2022.3155240

    Article  Google Scholar 

  3. Lu, X.; Wang, P.; Niyato, D.; Kim, D.I.; Han, Z.: wireless networks with rf energy harvesting: a contemporary survey. IEEE Commun. Surv. Tutorials 17(17(2)), 757–789 (2015)

    Article  Google Scholar 

  4. Dai, H., Lu, Y., Law, M.K., Sin, S.W., Seng-Pan, U., Martins, R.P.: A Review and Design of the On-chip Rectifiers for RF Energy Harvesting, IEEE International Wireless Symposium. 1-14 (2015)

  5. Khan, D.; Oh, S.J.; Shehzad, K.; Basim, M.; Verma, D.; Pu, Y.G.; Lee, M.; Hwang, K.C.; Yang, Y.; Lee, K.-Y.: An efficient reconfigurable rf-dc converter with wide input power range for rf energy harvesting. IEEE Access 8, 79310–79318 (2020). https://doi.org/10.1109/ACCESS.2020.2990662

    Article  Google Scholar 

  6. Umeda, T.; Yoshida, H.; Sekine, S.; Fujita, Y.; Suzuki, T.; Otaka, S.: A 950-MHz rectifier circuit for sensor network tags with 10-m distance. IEEE J. Solid-State Circuits 41((41) (1)), 35–41 (2006)

    Article  Google Scholar 

  7. Lee, H.M.; Ghovanloo, M.: An integrated power-efficient active rectifier with offset-controlled high speed comparators for inductively powered applications. IEEE Trans. Circuits Syst.I Regul. Pap., 58(8), 1749–1760 (2011)

    Article  MathSciNet  Google Scholar 

  8. Kotani, K., Ito, T.: High Efficiency CMOS Rectifier Circuit with Self-Vth-cancellation and Power Regulation Functions for UHF RFIDs, In: IEEE Asian Solid-State Circuits Conferences, pp. 119–112 (2007)

  9. Mahmoud, M.; Abdel-Rahman, A.B.; Fahmy, G.A.; Allam, A.; Jia, H.; Pokharel, R.K.: dynamic threshold compensated, low voltage CMOS energy harvesting rectifier for UHF applications. Midwest Symp 1, 16–19 (2017)

    Google Scholar 

  10. Mandal, S.; Sarpeshkar, R.: Low-power cmos rectifier design for rfid applications. IEEE Trans Circuits Syst I Regul P 54(6), 1177–1188 (2007). https://doi.org/10.1109/TCSI.2007.895229

    Article  Google Scholar 

  11. Roy, S.; Azad, A.N.M.W.; Baidya, S.; Khan, F.: A comprehensive review on rectifiers, linear regulators, and switched-mode power processing techniques for biomedical sensors and implants utilizing in-body energy harvesting and external power delivery. IEEE Trans Power Electron 36(11), 12721–12745 (2021). https://doi.org/10.1109/TPEL.2021.3075245

    Article  Google Scholar 

  12. Liu, L.; Mu, J.; Ma, N.; Zhu, Z.: A hybrid threshold self-compensation rectifier for RF energy harvesting. IEICE Electron. Express 11(23), 20141000–20141000 (2014)

    Article  Google Scholar 

  13. Chang, Y.; Chouhan, S.S.; Halonen, K.: A scheme to improve PCE of differential-drive CMOS rectifier for low RF input power. Analog Integr. Circuits Signal Process. 90(1), 113–124 (2017)

    Article  Google Scholar 

  14. Hameed, Z.; Moez, K.: A 3.2 V -15 dbm adaptive threshold-voltage compensated RF energy harvester in 130 nm CMOS. IEEE Trans. Circuits Syst. I Regul. Pap. 62(4), 948–956 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chouhan, S.S.; Halonen, K.: Threshold voltage compensation scheme for RF-to-DC converter used in RFID applications. Electron. Lett. 51(12), 892–894 (2015)

    Article  Google Scholar 

  16. Al-Absi, M.A.: Al-Battati S,: Hybrid internal vth cancellation rectifiers for rf energy harvesting. IEEE Access 8, 51976–51980 (2020)

    Article  Google Scholar 

  17. Enz, C.C.; Krummenacher, F.; Vittoz, E.A.: An analytical mos transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications. Analog integrated circuits and signal processing 8(1), 83–114 (1995)

  18. Tsividis, Y.: Operation and Modeling of the MOS Transistor. McGraw-Hill Inc, London (1987)

    Google Scholar 

  19. Xu, P.; Flandre, D.; Bol, D.: Analysis, modeling, and design of a 2.45-ghz rf energy harvester for swipt iot smart sensors. IEEE J Solid-State Circuits 54(10), 2717–2729 (2019). https://doi.org/10.1109/JSSC.2019.2914581

    Article  Google Scholar 

  20. Noghabaei, S.M., Radin, R.L., Savaria, Y., Sawan, M.: A high-efficiency ultra-low-power cmos rectifier for rf energy harvesting applications. In: 2018 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4 (2018). doi: https://doi.org/10.1109/ISCAS.2018.8351149

  21. Almansouri, A.S.; Ouda, M.H.; Salama, K.N.: A cmos rf-to-dc power converter with 86% efficiency and 19.2-dbm sensitivity. IEEE Trans. Microw. Theory Tech. 66(5), 2409–2415 (2018). https://doi.org/10.1109/TMTT.2017.2785251

    Article  Google Scholar 

  22. Ouda, M.H.; Khalil, W.; Salama, K.N.: Self-biased differential rectifier with enhanced dynamic range for wireless powering. IEEE Trans Circuits Syst II: Expr Br 64(5), 515–519 (2017). https://doi.org/10.1109/TCSII.2016.2591263

    Article  Google Scholar 

  23. Zeng, Z.; Shen, S.; Zhong, X.; Li, X.; Tsui, C.-Y.; Bermak, A.; Murch, R.; Sánchez-Sinencio, E.: Design of sub-gigahertz reconfigurable rf energy harvester from 22 to 4 dbm with 99.8% peak mppt power efficiency. IEEE J Solid-State Circuits 54(9), 2601–2613 (2019). https://doi.org/10.1109/JSSC.2019.2919420

    Article  Google Scholar 

  24. Abouzied, M.A.; Ravichandran, K.; Sánchez-Sinencio, E.: A fully integrated reconfigurable self-startup rf energy-harvesting system with storage capability. IEEE J Solid-State Circuits 52(3), 704–719 (2017). https://doi.org/10.1109/JSSC.2016.2633985

    Article  Google Scholar 

  25. Ouda, M.H.; Khalil, W.; Salama, K.N.: Design of sub-gigahertz reconfigurable rf energy harvester from 22 to 4 dbm with 99.8% peak mppt power efficiency. IEEE Microw Wirel Compon Lett 26(8), 634–636 (2016). https://doi.org/10.1109/LMWC.2016.2586077

    Article  Google Scholar 

  26. Nagaveni, S.; Kaddi, P.; Khandekar, A.; Dutta, A.: Resistance compression dual-band differential cmos rf energy harvester under modulated signal excitation. IEEE Trans Circuits Syst I: Regul P 67(11), 4053–4062 (2020). https://doi.org/10.1109/TCSI.2020.3006156

    Article  Google Scholar 

  27. Chong, G.; Ramiah, H.; Yin, J.; Rajendran, J.; Wong, W.R.; Mak, P.-I.; Martins, R.P.: Cmos cross-coupled differential-drive rectifier in subthreshold operation for ambient rf energy harvesting-model and analysis. IEEE Trans Circuits Syst II: Expr Br 66(12), 1942–1946 (2019). https://doi.org/10.1109/TCSII.2019.2895659

    Article  Google Scholar 

  28. Razi, K.F.; Moezzi, M.: A cmos rf energy harvester with high pce over a wide range of input power. Anal Integr Circuits Signal Proc 112(2), 317–323 (2022)

    Article  Google Scholar 

  29. Khan, D.; Abbasizadeh, H.; Kim, S.-Y.; Khan, Z.H.N.; Shah, S.A.A.; Pu, Y.G.; Hwang, K.C.; Yang, Y.; Lee, M.; Lee, K.-Y.: A design of ambient rf energy harvester with sensitivity of 21 dbm and power efficiency of a 3.93. Energies (2018). https://doi.org/10.3390/en11051258

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the support that is provided by the Deanship of Research Oversight and Coordination and the center for Smart Mobility and Logistics (SML) at King Fahd University of Petroleum & Minerals (KFUPM) for funding this work through project No. SB201018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munir Al-Absi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahnashi, Y., Al-Khulaifi, A. & Al-Absi, M. A New Wide Power Dynamic Range CMOS RF-to-DC Converter Using Body-Control Scheme. Arab J Sci Eng 48, 15553–15560 (2023). https://doi.org/10.1007/s13369-023-08177-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08177-x

Keywords

Navigation