Skip to main content
Log in

Direct Vector Control Using Feedback PI Controllers of a DPAG Supplied by a Two-Level PWM Inverter for a Multi-rotor Wind Turbine System

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, a so-called return control technology applied to a feedback proportional-integral (FPI) controller is used to control a variable-speed multi-rotor wind turbine (VSMRWT) conversion system with a double-powered asynchronous generator (DPAG). This generator is controlled by direct vector control (DVC). However, the proposed DVC based on FPI controllers is a new strategy and is different from a traditional control, where the FPI controller was used for this purpose to improve the performance of the DPAG. The paper also indicates the importance of using the DVC-FPI in improving the efficiency and robustness of the DPAG used as a system for converting mechanical energy into electrical energy. Using the FPI controller to improve the power generated by the DPAG can allow for to minimization of power ripples and improve the quality of the current in the network. Also, using the DVC-FPI leads to an improvement in overshoot and steady-state error (SSE) compared to DVC. DPAG enables separate control of the interacting and active forces of the system in both the transient and SSE. The numerical results of the DVC-FPI are compared with the results of the DVC of the DPAG at different operating conditions using the MATLAB environment. Furthermore, the comparison is made in terms of power ripples, total harmonic distortion of current, dynamic response, SSE, and overshoot, and this is performed in the case of changing or not changing the DPAG parameters. The simulation results illustrate the robustness and efficiency of the DVC-FPI to the parametric variations of the DPAG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Khlaifat, N.; Altaee, A.; Zhou, J.; Huang, Y.; Braytee, A.: Optimization of a small wind turbine for a rural area: a case study of Deniliquin, New South Wales. Australia. Energies 13, 2292 (2020). https://doi.org/10.3390/en13092292

    Article  Google Scholar 

  2. Rushdi, M.A.; Rushdi, A.A.; Dief, T.N.; Halawa, A.M.; Yoshida, S.; Schmehl, R.: Power prediction of airborne wind energy systems using multivariate machine learning. Energies 13, 2367 (2020). https://doi.org/10.3390/en13092367

    Article  Google Scholar 

  3. Astolfi, D.; Castellani, F.; Becchetti, M.; Lombardi, A.; Terzi, L.: Wind turbine systematic yaw error: operation data analysis techniques for detecting it and assessing its performance impact. Energies 13, 2351 (2020). https://doi.org/10.3390/en13092351

    Article  Google Scholar 

  4. Sun, D.; Wang, Y.; Jiang, T.; Wang, X.; Sun, J.; Nian, H.: Multi-target control strategy of DFIG using virtual synchronous generator based on extended power resonance control under unbalanced power grid. Energies 13, 2232 (2020). https://doi.org/10.3390/en13092232

    Article  Google Scholar 

  5. Jin, M.; Dawei, Z.; Liangzhong, Y.; Minhui, Q.; Koji, Y.; Lingzhi, Z.: Analysis on application of a current-source based DFIG wind generator model. CSEE J. Power Energy Syst. 4(3), 352–361 (2018). https://doi.org/10.17775/CSEEJPES.2018.00060

    Article  Google Scholar 

  6. Zou, Z.-C.; Xiao, X.-Y.; Liu, Y.-F.; Zhang, Y.; Wang, Y.-H.: Integrated protection of DFIG-based wind turbine with a resistive-type SFCL under symmetrical and asymmetrical faults. IEEE Trans. Appl. Supercond. 26(7), 1–5 (2016). https://doi.org/10.1109/TASC.2016.2574352

    Article  Google Scholar 

  7. Benbouhenni, H.; Boudjema, Z.; Belaidi, A.: A novel matlab/simulink model of DFIG drive using NSMC method with NSVM strategy. Int. J. Appl. Power Eng. (IJAPE) 8(3), 221–233 (2019)

    Article  Google Scholar 

  8. Ngamroo, I.: Optimization of SMES-FCL for augmenting FRT performance and smoothing output power of grid-connected DFIG wind turbine. IEEE Trans. Appl. Supercond. 26(7), 1–5 (2016). https://doi.org/10.1109/TASC.2016.2592945

    Article  Google Scholar 

  9. Benbouhenni, H.; Boudjema, Z.; Belaidi, A.: Power ripple reduction of DPC DFIG drive using ANN controller. Acta Electrotech. Inform. 20(1), 15–22 (2020)

    Article  Google Scholar 

  10. Habib, B.: A comparison study between fuzzy PWM and SVM inverter in NSMC control of stator active and reactive power control of a DFIG based wind turbine systems. Int. J. Appl. Power Eng. (IJAPE) 8(1), 78–92 (2019)

    Article  Google Scholar 

  11. Xiong, P.; Sun, D.: Backstepping-based DPC strategy of a wind turbine-driven DFIG under normal and harmonic grid voltage. IEEE Trans. Power Electron. 31(6), 4216–4225 (2016). https://doi.org/10.1109/TPEL.2015.2477442

    Article  Google Scholar 

  12. Habib, B.: Application of seven-level neural space vector PWM in direct vector control system of doubly fed induction generator for wind turbine. Int. J. Smart Grid 3(3), 163–171 (2019)

    Google Scholar 

  13. Benbouhenni, H.; Boudjema, Z.; Belaidi, A.A.: comparative study between four-level NSVM and three-level NSVM technique for a DFIG-based WECSs controlled by indirect vector control. Carp. J. Electron. Comput. Eng. 11(2), 13–19 (2018)

    Google Scholar 

  14. Shipurkar, U.; Strous, T.D.; Polinder, H.; Ferreira, J.A.; Veltman, A.: Achieving sensorless control for the brushless doubly fed induction machine. IEEE Trans. Energy Convers. 32(4), 1611–1619 (2017). https://doi.org/10.1109/TEC.2017.2724204

    Article  Google Scholar 

  15. Hannan, M.A.; Ali, J.A.; Mohamed, A.; Amirulddin, U.A.U.; Tan, N.M.L.; Uddin, M.N.: Quantum-behaved lightning search algorithm to improve indirect field-oriented fuzzy-PI control for IM drive. IEEE Trans. Ind. Appl. 54(4), 3793–3805 (2018). https://doi.org/10.1109/TIA.2018.2821644

    Article  Google Scholar 

  16. Habib, B.; Boudjema, Z.; Belaidi, A.: DFIG-based wind energy conversion system using five-level FSVM technique. Int. J. Renew. Energy Technol. 11(2), 147–164 (2020)

    Article  Google Scholar 

  17. Habib, B.: Reducing current and torque ripples in DVC control of DFIG operation at constant switching frequency for wind generation application. Majlesi J. Energy Manag. 8(4), 47–55 (2019)

    Google Scholar 

  18. Nicola, M.; Nicola, C.-I.; Duţă, M.: Sensorless control of PMSM using FOC strategy based on multiple ANN and load torque observer. Int. Conf. Dev. Appl. Syst. (DAS) 2020, 32–37 (2020). https://doi.org/10.1109/DAS49615.2020.9108914

    Article  Google Scholar 

  19. Singh, G., Singh, G.: A fuzzy pre-compensated-PI controller for indirect field oriented controlled induction motor drive. In: 2014 Innovative Applications of Computational Intelligence on Power, Energy and Controls with their impact on Humanity (CIPECH), 257-261 (2014)https://doi.org/10.1109/CIPECH.2014.7019070

  20. Amrane, F.; Chaiba, A.: A novel direct power control for grid-connected doubly fed induction generator based on hybrid artificial intelligent control with space vector modulation. Rev. Sci Tech. Electrotech. Energy 61(3), 263–268 (2016)

    Google Scholar 

  21. Fayssal, A.; Bruno, F.; Azeddine, C.: Experimental investigation of efficient and simple wind-turbine based on DFIG-direct power control using LCL-filter for stand-alone mode. ISA Trans. (2021). https://doi.org/10.1016/j.isatra.2021.07.008

    Article  Google Scholar 

  22. Yu, S.S.; Zhang, G.; Fernando, T.; Iu, H.H.: A DSE-based SMC method of sensorless DFIG wind turbines connected to power grids for energy extraction and power quality enhancement. IEEE Access 6, 76596–76605 (2018). https://doi.org/10.1109/ACCESS.2018.2883591

    Article  Google Scholar 

  23. Habib, B.; Bizon, N.: Third-order sliding mode applied to the direct field-oriented control of the asynchronous generator for variable-speed contra-rotating wind turbine generation systems. Energies 14, 5877 (2021). https://doi.org/10.3390/en14185877

    Article  Google Scholar 

  24. Habib, B.; Bizon, N.: improved rotor flux and torque control based on the third-order sliding mode scheme applied to the asynchronous generator for the single-rotor wind turbine. Mathematics 9, 2297 (2021). https://doi.org/10.3390/math9182297

    Article  Google Scholar 

  25. Taoussi, M.; Bossoufi, B.; Bouderbala, M.; Motahhir, S.; Alkhammash, E.H.; Masud, M.; Zinelaabidine, N.; Karim, M.: Implementation and validation of hybrid control for a DFIG wind turbine using an FPGA controller board. Electronics 10, 3154 (2021). https://doi.org/10.3390/electronics10243154

    Article  Google Scholar 

  26. Brando, G.; Dannier, A.; Spina, I.: Performance analysis of a full order sensorless control adaptive observer for doubly-fed induction generator in grid connected operation. Energies 14, 1254 (2021). https://doi.org/10.3390/en14051254

    Article  Google Scholar 

  27. Benbouhenni, H.; Bizon, N.: A synergetic sliding mode controller applied to direct field-oriented control of induction generator-based variable speed dual-rotor wind turbines. Energies 14, 4437 (2021). https://doi.org/10.3390/en14154437

    Article  Google Scholar 

  28. Amrane, F.; Chaiba, A.; Babas, B.E.; Mekhilef, S.: Design and implementation of high performance field oriented control for grid-connected doubly fed induction generator via hysteresis rotor current controller. Rev. Sci. Tech. Electrotech. Energy 61(4), 319–324 (2016)

    Google Scholar 

  29. Habib, B.; Nicu, B.: Terminal synergetic control for direct active and reactive powers in asynchronous generator-based dual-rotor wind power systems. Electronics 10(16), 1–23 (2021). https://doi.org/10.3390/electronics10161880

    Article  Google Scholar 

  30. Ravikiran, H.; Tukaram, M.: Modified super twisting algorithm based sliding mode control for LVRT enhancement of DFIG driven wind system. Energy Rep. 8, 3600–3613 (2022). https://doi.org/10.1016/j.egyr.2022.02.235

    Article  Google Scholar 

  31. Reddy, C.R.; Goud, B.S.; Aymen, F.; Rao, G.S.; Bortoni, E.C.: Power quality improvement in HRES grid connected system with FOPID based atom search optimization technique. Energies 14, 5812 (2021). https://doi.org/10.3390/en14185812

    Article  Google Scholar 

  32. Farida, M., Belkacem, S., Colak, I.: Fuzzy high order sliding mode control based DPC of DFIG using SVM. In: 2021 9th International Conference on Smart Grid (icSmartGrid), pp. 278–282 (2021). Doi: https://doi.org/10.1109/icSmartGrid52357.2021.9551262.

  33. Mohammadi, J.; Vaez-Zadeh, S.; Afsharnia, S.; Daryabeigi, E.: A combined vector and direct power control for DFIG-based wind turbines. IEEE Trans. Sustain. Energy 5(3), 767–775 (2014). https://doi.org/10.1109/TSTE.2014.2301675

    Article  Google Scholar 

  34. Pande, V.N.; Mate, U.M.; Kurode, S.: Discrete sliding mode control strategy for direct real and reactive power regulation of wind driven DFIG. Electric Power Syst. Res. 100, 73–81 (2013). https://doi.org/10.1016/jepsr.2013.03.001

    Article  Google Scholar 

  35. de Oliveira, J.R.; Andreoli, A.L.: Wind Turbine Emulator: A Tool for Experimental and Computational Study. IEEE Lat. Am. Trans. 19(11), 1832–1839 (2021). https://doi.org/10.1109/TLA.2021.9475616

    Article  Google Scholar 

  36. Hussain, J.; Mishra, M.K.: An efficient wind speed computation method using sliding mode observers in wind energy conversion system control applications. IEEE Trans. Ind. Appl. 56(1), 730–739 (2020). https://doi.org/10.1109/TIA.2019.2942018

    Article  Google Scholar 

  37. Fischer, K., et al.: Reliability of power converters in wind turbines: exploratory analysis of failure and operating data from a worldwide turbine fleet. IEEE Trans. Power Electron. 34(7), 6332–6344 (2019). https://doi.org/10.1109/TPEL.2018.2875005

    Article  Google Scholar 

  38. Ullah, W.; Khan, F.; Hussain, S.: A novel dual rotor permanent magnet flux switching generator for counter rotating wind turbine applications. IEEE Access 10, 16456–16467 (2022). https://doi.org/10.1109/ACCESS.2022.3149895

    Article  Google Scholar 

  39. Yahdou, A.; Djilali, A.B.; Boudjema, Z.; Mehedi, F.: Improved vector control of a counter-rotating wind turbine system using adaptive backstepping sliding mode. J. Eur. Syst. Autom. 53(5), 645–651 (2020)

    Google Scholar 

  40. Beik, O.; Al-Adsani, A.S.: Active and passive control of a dual rotor wind turbine generator for DC grids. IEEE Access 9, 1987–1995 (2021). https://doi.org/10.1109/ACCESS.2020.3047267

    Article  Google Scholar 

  41. Luo, X.; Niu, S.: A novel contra-rotating power split transmission System for wind power generation and its dual MPPT control strategy. IEEE Trans. Power Electron. 32(9), 6924–6935 (2017). https://doi.org/10.1109/TPEL.2016.2629021

    Article  Google Scholar 

  42. Erturk, E.; Sivrioglu, S.; Bolat, F.C.: analysis model of a small scale counter-rotating dual rotor wind turbine with double rotational generator armature. Int. J. Renew. Energy Res. (IJRER) 8(4), 1846 (2018)

    Google Scholar 

  43. Kumar, P.S.; Abraham, A.; Bensingh, R.J.; Ilangovan, S.: Computational and experimental analysis of a counter-rotating wind turbine system. J. Sci. Ind. Res. 72, 300–306 (2013)

    Google Scholar 

  44. No, T.S.; Kim, J.-K.; Moon, J.H.; Kim, S.J.: Modeling control and simulation of dual rotor wind turbine generator system. Renew. Energy 34(10), 2124–2132 (2009)

    Article  Google Scholar 

  45. Tang, W.; Hu, J.; Chang, Y.; Liu, F.: Modeling of DFIG-based wind turbine for power system transient response analysis in rotor speed control timescale. IEEE Trans. Power Syst. 33(6), 6795–6805 (2018). https://doi.org/10.1109/TPWRS.2018.2827402

    Article  Google Scholar 

  46. Mondal, S.; Kastha, D.: Input reactive power controller with a novel active damping strategy for a matrix converter fed direct torque controlled DFIG for wind power generation. IEEE J. Emerg. Sel. Top. Power Electron. 8(4), 3700–3711 (2020). https://doi.org/10.1109/JESTPE.2019.2938012

    Article  Google Scholar 

  47. Prasad, R.M.; Mulla, M.A.: A novel position-sensorless algorithm for field-oriented control of DFIG with reduced current sensors. IEEE Trans. Sustain. Energy 10(3), 1098–1108 (2019). https://doi.org/10.1109/TSTE.2018.2860993

    Article  Google Scholar 

  48. Kong, H.; He, J.; Liu, Y.; Cheng, P.; Ma, J.: Improved direct power control of doubly fed induction generator without phase-locked loop. IEEE Sustain. Power Energy Conf. (iSPEC) 2020, 199–204 (2020). https://doi.org/10.1109/iSPEC50848.2020.9351036

    Article  Google Scholar 

  49. Chen, S.Z.; Cheung, N.C.; Wong, K.C.; Wu, J.: integral sliding-mode direct torque control of doubly-fed induction generators under unbalanced grid voltage. IEEE Trans. Energy Convers. 25(2), 356–368 (2010). https://doi.org/10.1109/TEC.2009.2036249

    Article  Google Scholar 

  50. Mahmodicherati, S.; Elbuluk, M.; Sozer, Y.: Reducing ripple in wind power systems: a hybrid method formed using two power controllers. IEEE Ind. Appl. Mag. 25(2), 23–35 (2019). https://doi.org/10.1109/MIAS.2018.2875128

    Article  Google Scholar 

  51. Amin, I.K.; Uddin, M.N.: Nonlinear control operation of DFIG-based WECS Incorporated with machine loss reduction scheme. IEEE Trans. Power Electron. 35(7), 7031–7044 (2020). https://doi.org/10.1109/TPEL.2019.2955021

    Article  Google Scholar 

  52. Prasad, R.M.; Mulla, M.A.: Mathematical modeling and position-sensorless Algorithm for stator-side field-oriented control of rotor-tied DFIG in rotor flux reference frame. IEEE Trans. Energy Convers. 35(2), 631–639 (2020). https://doi.org/10.1109/TEC.2019.2956255

    Article  Google Scholar 

  53. He, Y.; Wang, Q.: An improved ILMI method for static output feedback control with application to multivariable PID control. IEEE Trans. Autom. Control 51(10), 1678–1683 (2006). https://doi.org/10.1109/TAC.2006.883029

    Article  MathSciNet  MATH  Google Scholar 

  54. Erazo-Damián, I.; Apsley, J.M.; Perini, R.; Iacchetti, M.F.; Marques, G.D.: Stand-Alone DFIG FOC sensitivity and stability under mismatched inductances. IEEE Trans. Energy Convers. 34(2), 860–869 (2019). https://doi.org/10.1109/TEC.2018.2869286

    Article  Google Scholar 

  55. Nair, R.; Narayanan, G.: Stator flux based model reference adaptive observers for sensorless vector control and direct voltage control of doubly-fed induction generator. IEEE Trans. Ind. Appl. 56(4), 3776–3789 (2020). https://doi.org/10.1109/TIA.2020.2988426

    Article  Google Scholar 

  56. Seyed, R.M.; Hamed, M.; Seyed, H.S.: Sensorless vector control of doubly fed induction generator based wind turbine using fuzzy fractional order adaptive disturbance rejection control. Energy Sour. Part A Recover Util. Environ. Eff. 44(2), 4630–4663 (2022). https://doi.org/10.1080/15567036.2022.2077475

    Article  Google Scholar 

  57. Sara, M.; Ahmed, E.; Issam, M.; Tamou, N.; Badre, B.I.; Ben Tarla, L.: Performance of a vector control for DFIG driven by wind turbine: real time simulation using DS1104 controller board. Int. J. Power Electron. Drive Syst. 10(2), 1003–1013 (2019). https://doi.org/10.11591/ijpeds.v10.i2.pp1003-1013

    Article  Google Scholar 

  58. Yaichi, I.; Semmah, A.; Wira, P.; Djeriri, Y.: Super-twisting sliding mode control of a doubly-fed induction generator based on the SVM strategy. Period. Polytech. Elec. Eng. Comput. Sci. 63(3), 178–190 (2019)

    Article  Google Scholar 

  59. Moreira, A.B.; Barros, T.A.D.S.; Teixeira, V.S.D.C.; Souza, R.R.D.; Paula, M.V.D.; Filho, E.R.: Control of powers for wind power generation and grid current harmonics filtering from doubly fed induction generator: comparison of two strategies. IEEE Access 7, 32703–32713 (2019). https://doi.org/10.1109/ACCESS.2019.2899456

    Article  Google Scholar 

  60. Yusoff, N.A.; Razali, A.M.; Karim, K.A.; Sutikno, T.; Jidin, A.: A concept of virtual-flux direct power control of three-phase AC-DC converter. Int. J. Power Electron. Drive Syst. 8(4), 1776–1784 (2017). https://doi.org/10.11591/ijpeds.v8i4.pp1776-1784

    Article  Google Scholar 

  61. Ayrira, W.; Ourahoua, M.; El Hassounia, B.; Haddib, A.: Direct torque control improvement of a variable speed DFIG based on a fuzzy inference system. Math. Comput. Simul. 167, 308–324 (2020). https://doi.org/10.1016/j.matcom.2018.05.014

    Article  MathSciNet  Google Scholar 

  62. Said, M.; Derouich, A.; El Ouanjli, N.; El Mahfoud, M.: Enhancement of the direct torque control by using artificial neuron network for a doubly fed induction motor. Intell. Syst. Appl. 13, 1–18 (2022). https://doi.org/10.1016/j.iswa.2022.200060

    Article  Google Scholar 

  63. Yahdou, A.; Hemici, B.; Boudjema, Z.: Second order sliding mode control of a dual-rotor wind turbine system by employing a matrix converter. J. Electr. Eng. 16, 1–11 (2016)

    Google Scholar 

  64. Alhato, M.M.; Bouallègue, S.: Direct power control optimization for doubly fed induction generator based wind turbine systems. Math. Comput. Appl. 24, 77 (2019). https://doi.org/10.3390/mca24030077

    Article  MathSciNet  Google Scholar 

  65. Quan, Y.; Hang, L.; He, Y.; Zhang, Y.: Multi-Resonant-based sliding mode control of DFIG-based wind system under unbalanced and harmonic network conditions. Appl. Sci. 9, 1124 (2019). https://doi.org/10.3390/app9061124

    Article  Google Scholar 

  66. El Ouanjli, N.; Aziz, D.; El Ghzizal, A.; Mohammed, T.; Youness, E.; Khalid, M.; Badre, B.: Direct torque control of doubly fed induction motor using three-level NPC inverter. Protect. Control Mod. Power Syst. 17(4), 1–9 (2019). https://doi.org/10.1186/s41601-019-0131-7

    Article  Google Scholar 

  67. Kamarzarrin, M.; Refan, M.H.; Amiri, P.; Dameshghi, A.: Fault diagnosis of wind turbine double-fed induction generator based on multi-level fusion and measurement of back-to-back converter current signal. IJEEE 18(2), 2074–2074 (2022)

    Google Scholar 

  68. Echiheb, F.; Ihedrane, Y.; Bossoufi, B., et al.: Robust sliding-backstepping mode control of a wind system based on the DFIG generator. Sci Rep 12, 11782 (2022). https://doi.org/10.1038/s41598-022-15960-7

    Article  Google Scholar 

  69. Hamid, Ch.; Aziz, D.; Seif Eddine, Ch.; Othmane, Z.; Mohammed, T.; Hasnae, E.: Integral sliding mode control for DFIG based WECS with MPPT based on artificial neural network under a real wind profile. Energy Rep. 7, 4809–4824 (2021). https://doi.org/10.1016/j.egyr.2021.07.066

    Article  Google Scholar 

  70. Ibrahim, Y.; Semmah, A.; Patrice, W.: Neuro-second order sliding mode control of a DFIG based wind turbine system. J. Electr. Electron. Eng. 13(1), 63–68 (2020)

    Google Scholar 

  71. Alami, H.E.; Bossoufi, B.; Motahhir, S.; Alkhammash, E.H.; Masud, M.; Karim, M.; Taoussi, M.; Bouderbala, M.; Lamnadi, M.; El Mahfoud, M.: FPGA in the loop implementation for observer sliding mode control of DFIG-generators for wind turbines. Electronics 11, 116 (2022). https://doi.org/10.3390/electronics11010116

    Article  Google Scholar 

  72. Bossoufi, B.; Karim, M.; Lagrioui, A.; Taoussi, M.: FPGA-based implementation nonlinear backstepping control of a PMSM Drive. IJPEDS Int. J Power Electron. Drive Syst. 4, 12–23 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HB contributed to conceptualization, software, methodology, investigation, writing—original draft preparation ; HB and NB were involved in validation; HB, PT and NB contributed to resources; NB and AGM were involved in project administration; IC, AGM and PT contributed to data curation; IC, NB and PT were involved in visualization; NB, AGM and PT contributed to funding acquisition; NB and PT were involved in supervision; NB and AGM contributed to visualization; NB was involved in formal analysis; HB, IC, NB, PT contributed to writing—review and editing.

Corresponding authors

Correspondence to Habib Benbouhenni or Nicu Bizon.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benbouhenni, H., Colak, I., Bizon, N. et al. Direct Vector Control Using Feedback PI Controllers of a DPAG Supplied by a Two-Level PWM Inverter for a Multi-rotor Wind Turbine System. Arab J Sci Eng 48, 15177–15193 (2023). https://doi.org/10.1007/s13369-023-08035-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08035-w

Keywords

Navigation