Skip to main content
Log in

A Global Correlation Action Recognition Framework Using WiFi Signal-Based DenseNet

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Intelligent human perception has promoted the development of Internet of Things, and privacy issues have also emerged. Human action recognition based on WiFi channel state information (CSI) is a new technology, which can realize the perception of human activity at low cost and avoid privacy leakage. Most conventional works recognize some postures with obvious differences in actions. However, they will face challenges in identifying some special actions, e.g., irregular actions and symmetrical actions. WiFi CSI signal has a strong global temporal and spatial correlation, the key question in identifying these special actions is how to combine their global correlation. Most prior work only considered its temporal correlation but ignored the spatial correlation. In this paper, we propose a deep learning framework based on DenseNet that can combine the global temporal and spatial correlation of WiFi CSI simultaneity. Specifically, we completely retain the continuity of the action sample and use DenseNet to mine its global correlation information. We collect action samples in the actual scene, including symmetrical actions that have not been explored before, and evaluate the performance of our proposed approach in different environments. The recognition accuracy of the proposed method exceeds 96% in different scenarios. We also compare with some benchmark methods, and the experimental results show that our proposed approach achieves the best recognition performance, the recognition accuracy of our proposed approach is 2% higher than that of the baseline method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Wang, H.; Zhang, D.; Wang, Y.; Ma, J.; Wang, Y.; Li, S.: Rt-fall: A real-time and contactless fall detection system with commodity wifi devices. IEEE Trans. Mobile Comput. 16(2), 511–526 (2017). https://doi.org/10.1109/tmc.2016.2557795

    Article  Google Scholar 

  2. Wang, Y.; Wu, K.; Ni, L.M.: WiFall: Device-free fall detection by wireless networks. IEEE Trans. Mobile Comput. 16(2), 581–594 (2017). https://doi.org/10.1109/tmc.2016.2557792

    Article  Google Scholar 

  3. Wang, G.; Zou, Y.; Zhou, Z.; Wu, K.; Ni, L.M.: We can hear you with Wi-Fi! IEEE Trans. Mobile Comput. 15(11), 2907–2920 (2016). https://doi.org/10.1109/tmc.2016.2517630

    Article  Google Scholar 

  4. Yatani, K.; Truong, K.N.: Bodyscope: a wearable acoustic sensor for activity recognition. In: Proceedings of ACM Conference Ubiquitous Computing, pp. 341–350 (2012). https://doi.org/10.1145/2370216.2370269

  5. Zhu, Y.; Guo, G.: A study on visible to infrared action recognition. IEEE Signal Process. Lett. 20(9), 897–900 (2013). https://doi.org/10.1109/lsp.2013.2272920

    Article  Google Scholar 

  6. Herath, S.; Harandi, M.; Porikli, F.: Going deeper into action recognition: a survey. Image Vis. Comput. 60, 4–21 (2017). https://doi.org/10.1016/j.imavis.2017.01.010

    Article  Google Scholar 

  7. Wang, J.; Zhang, X.; Gao, Q.; Yue, H.; Wang, H.: Device-free wireless localization and activity recognition: a deep learning approach. IEEE Trans. Mobile Comput. 66(7), 6258–6267 (2017). https://doi.org/10.1109/TVT.2016.2635161

    Article  Google Scholar 

  8. Abdelnasser, H.; Youssef, M.; Harras, K.A.: Wigest: A ubiquitous wifi-based gesture recognition system. In: Proceedings of IEEE Conference on Computer Communications (INFOCOM), pp. 1472–1480 (2015). https://doi.org/10.1109/INFOCOM.2015.7218525

  9. Yousefi, S.; Narui, H.; Dayal, S.; Ermon, S.; Valaee, S.: A survey on behavior recognition using WiFi channel state information. IEEE Commun. Mag. 55(10), 98–104 (2017). https://doi.org/10.1109/MCOM.2017.1700082

    Article  Google Scholar 

  10. Chen, Z.; Zhang, L.; Jiang, C.; Cao, Z.; Cui, W.: WiFi CSI based passive human activity recognition using attention based BLSTM. IEEE Trans. Mobile Comput. 18(11), 2714–2724 (2019). https://doi.org/10.1109/TMC.2018.2878233

    Article  Google Scholar 

  11. Sheng, B.; Fang, Y.; Xiao, F.; Sun, L.: An accurate device-free action recognition system using two-stream network. IEEE Trans. Veh. Technol. 69(7), 7930–7939 (2020). https://doi.org/10.1109/TVT.2020.2993901

    Article  Google Scholar 

  12. O’Shea, T.; Hoydis, J.: An introduction to deep learning for the physical layer. IEEE Trans. Cogn. Commun. Netw. 3(4), 563–575 (2017). https://doi.org/10.1109/TCCN.2017.2758370

    Article  Google Scholar 

  13. Aceto, G.; Ciuonzo, D.; Montieri, A.; Pescapé, A.: Mobile encrypted traffic classification using deep learning: experimental evaluation, lessons learned, and challenges. IEEE Trans. Netw. Serv. Manag. 16(2), 445–458 (2019). https://doi.org/10.1109/TNSM.2019.2899085

    Article  Google Scholar 

  14. Hochreiter, S.; Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  15. Graves, A.; Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 18(5–6), 602–610 (2005). https://doi.org/10.1016/j.neunet.2005.06.042

    Article  Google Scholar 

  16. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269 (2017). https://doi.org/10.1109/CVPR.2017.243

  17. Li, H.; Yang, W.; Wang, J.; Xu, Y.; Huang, L.: Wifinger: Talk to your smart devices with finger-grained gesture. In: Proceedings of ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 250–261 (2016). https://doi.org/10.1145/2971648.2971738

  18. Zeng, Y.; Pathak, P.H.; Mohapatra, P.: Wiwho: Wifi-based person identification in smart spaces. In: Proceedings of ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), pp. 1–12 (2016). https://doi.org/10.1109/IPSN.2016.7460727

  19. Wang, W.; Liu, A.X.; Shahzad, M.: Gait recognition using WiFi signals. In: Proceedings of ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 363–373 (2016). https://doi.org/10.1145/2971648.2971670

  20. Xiao, F.; Chen, J.; Xie, X.; Gui, L.; Sun, L.; Wang, R.: SEARE: a system for exercise activity recognition and quality evaluation based on green sensing. IEEE Trans. Emerg. Top. Comput. 8(3), 752–761 (2020). https://doi.org/10.1109/TETC.2018.2790080

    Article  Google Scholar 

  21. Wang, W.; Liu, A.X.; Shahzad, M.; Ling, K.; Lu, S.: Understanding and modeling of WiFi signal based human activity recognition. In: Proceedings of the 21st Annual International Conference on Mobile Computing and Networking (MobiCom ’15), pp. 65–76 (2015). https://doi.org/10.1145/2789168.2790093

  22. Palipana, S.; Rojas, D.; Agrawal, P.; Pesch, D.: Falldefi: Ubiquitous fall detection using commodity Wi-Fi devices. In: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 1, pp. 1–25. https://doi.org/10.1145/3161183

  23. Kiddon, C.; Zettlemoyer, L.; Choi, Y.: Globally coherent text generation with neural checklist models. In: Proc. Conf. Empir. Methods Nat. Lang. Process., pp. 329–339 (2016). https://doi.org/10.18653/v1/d16-1032

  24. Liu, Y.; Zhang, D.; Du, L.; Gu, Z.; Qiu, J.; Tan, Q.: A simple but effective way to improve the performance of RNN-based encoder in neural machine translation task. In: IEEE International Conference on Data Science in Cyberspace (DSC), pp. 416–421. https://doi.org/10.1109/dsc.2019.00069

  25. Li, J.; Zhao, R.; Hu, H.; Gong, Y.: Improving rnn transducer modeling for end-to-end speech recognition. In: Proceedings of Automatic Speech Recognition and Understanding Workshop, ASRU, pp. 114–121 (2019). https://doi.org/10.1109/ASRU46091.2019.9003906

  26. Wang, F.; Gong, W.; Liu, J.; Wu, K.: Channel selective activity recognition with WiFi: a deep learning approach exploring wideband information. IEEE Trans. Netw. Sci. Eng. 7(1), 181–192 (2020). https://doi.org/10.1109/TNSE.2018.2825144

    Article  Google Scholar 

  27. Wang, F.; Gong, W.; Liu, J.: On spatial diversity in WiFi-based human activity recognition: a deep learning-based approach. IEEE Internet Things J. 6(2), 2035–2047 (2019). https://doi.org/10.1109/JIOT.2018.2871445

    Article  Google Scholar 

  28. Wang, X.; Wang, X.; Mao, S.: Rf sensing in the internet of things: a general deep learning framework. IEEE Commun. Mag. 56(9), 62–67 (2018). https://doi.org/10.1109/MCOM.2018.1701277

    Article  Google Scholar 

  29. Sheng, B.; Xiao, F.; Sha, L.; Sun, L.: Deep spatial-temporal model based cross-scene action recognition using commodity WiFi. IEEE Internet Things J. 7(4), 3592–3601 (2020). https://doi.org/10.1109/JIOT.2020.2973272

    Article  Google Scholar 

  30. Yang, Z.; Zhou, Z.; Liu, Y.: From RSSI to CSI: Indoor localization via channel response. ACM Comput Surv 46(2) (2013). https://doi.org/10.1145/2543581.2543592

  31. He, K.; Zhang, X.; Ren, S.; Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  32. Halperirr, D.; Hu, W.; Sheth, A.; Wetherall, D.: Tool release: gathering 802.11n traces with channel state information. ACM SIGCOMM Comp. Commun. Rev. 41(1), 53 (2011). https://doi.org/10.1145/1925861.1925870

    Article  Google Scholar 

  33. Kingma, D.P.; Ba, J.L.: Adam: A method for stochastic optimization. In: Int. Conf. Learn. Represent., ICLR - Conf. Track Proc. (2015)

  34. Lin, C.; Hu, J.; Sun, Y.; Ma, F.; Wang, L.; Wu, G.: Wiau: An accurate device-free authentication system with resnet. In: Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), pp. 1–9 (2018). https://doi.org/10.1109/SAHCN.2018.8397108

  35. Nascita, A.; Montieri, A.; Aceto, G.; Ciuonzo, D.; Persico, V.; Pescapé, A.: XAI meets mobile traffic classification: understanding and improving multimodal deep learning architectures. IEEE Trans. Netw. Serv. Manag. 18(4), 4225–4246 (2021). https://doi.org/10.1109/TNSM.2021.3098157

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Chen.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jian, Z., Liang, H., Chen, H. et al. A Global Correlation Action Recognition Framework Using WiFi Signal-Based DenseNet. Arab J Sci Eng 48, 10949–10962 (2023). https://doi.org/10.1007/s13369-023-07918-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07918-2

Keywords

Navigation