Skip to main content
Log in

Finger Vein Recognition Based on Oval Parameter-Dependent Convolutional Neural Networks

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The Gabor modulating convolutional neural network (CNN), which incorporates Gabor filter modules parallel to the convolutional layers, has made remarkable achievements in the finger vein recognition tasks. However, the Gabor module requires a bit of additional calculation and is only suitable for the shallow layers. Aiming at this problem, we proposed an oval parameter-dependent CNN (PDCNN) which is developed from the Gabor modulating CNN in two aspects but has superior performance. First, in the oval PDCNN, \(3\times 3\) convolutional kernels of the first several layers are replaced by \(3\times 3\) oval parameter-dependent kernels (PDKs) which are determined by 5 or fewer parameters according to a nonlinear oval function. The oval PDK can provide additional nonlinearity for feature extraction while reducing the number of parameters. In contrast to Gabor modulating modules, the oval PDKs are no longer restricted to shallow layers. Second, since the Gaussian component of the Gabor filter does not improve the network’s ability in feature extraction but rather increases the training difficulty, we remove the Gaussian component from the oval PDK to make it much easier to train. Two lightweight oval PDCNNs, with MobileNet and SqueezeNet as the basic architecture, are investigated. To illustrate the superiority of the proposed oval PDCNN, two experiments have been conducted. The first experiment compares the oval PDK with 4 other PDKs, including Gabor, cos, cross, and x, on three public finger vein datasets. The results illustrate that the oval PDCNN reduces the size of MobileNet and SqueezeNet by 0.34% and 30.36% without degrading recognition performance. Another experiment is to fit the convolutional kernels of well-trained MobileNet and SqueezeNet with PDKs to analyze their tendency. The kernels in shallow layers are not closer to any PDKs than in deep layers, which is different from the viewpoint that the property of shallow layers is close to the Gabor filter, and all kernels have not shown bias on any PDKs. It demonstrates that the advantage of oval PDK lies in its property of being easier to train than other PDKs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yao, Q.; Song, D.; Xu, X.; Zou, K.: A novel finger vein recognition method based on aggregation of radon-like features. Sensors 21(5), 1885 (2021)

    Article  Google Scholar 

  2. Chen, S.; Liu, Y.; Gao, X.; Han, Z.: Mobilefacenets: efficient cnns for accurate real-time face verification on mobile devices, pp. 1–10 (2018). arXiv:1804.07573

  3. Chen, S.; Liu, Y.; Gao, X.; Han, Z.: Lag-net: multi-granularity network for person re-identification via local attention system. IEEE Trans. Multimed. 24, 217–229 (2021)

    Google Scholar 

  4. Tang, S.; Zhou, S.; Kang, W.; Wu, Q.; Deng, F.: Finger vein verification using a siamese cnn. IET Biom. 8(5), 306–315 (2019)

    Article  Google Scholar 

  5. He, K.; Gu, Y.; Liao, X.; Lai, S.; Jiang, W.: Bag of tricks and a strong baseline for deep person re-identification. Paper presented at the IEEE conference on computer vision and pattern recognition, Long Beach, CA, USA, 16-20 June 2019 (2019)

  6. Luo, H.; Jiang, W.; Gu, Y.; Liu, F.; Liao, X.; Lai, S.; Gu, J.: A strong baseline and batch normalization neck for deep person re-identification, pp. 1–12 (2020). arXiv:1906.08332v2

  7. He, K.; Zhang, X.; Ren, S.; Sun, J.: Deep residual learning for image recognition. Paper presented at the IEEE conference on computer vision and pattern recognition, Las Vegas, Nevada, USA, 27–30 June 2016 (2016)

  8. Zhang, Y.; Li, W.; Zhang, L.; Ning, X.; Sun, L.; Lu, Y.: Adaptive learning gabor filter for finger-vein recognition. IEEE Access 7, 159821–159830 (2019)

    Article  Google Scholar 

  9. Zhang, Y.; Li, W.; Zhang, L.; Ning, X.; Sun, L.; Lu, Y.: Agcnn: adaptive gabor convolutional neural networks with receptive for vein biometric recognition. Concurr. Comput. Pract. Exp. 34(12), 5697 (2020)

    Google Scholar 

  10. Luan, S.; Chen, C.; Zhang, B.; Han, J.; Liu, J.: Gabor convolutional networks. IEEE Trans. Image Process. 27(9), 4357–4366 (2018)

    Article  MathSciNet  Google Scholar 

  11. Sandler, M.; Howard, A.; Zhu, M.L.; Zhmoginov, A.; Chen, L.C.: Mobilenetv2: inverted residuals and linear bottlenecks, pp. 1–14 (2018). arXiv:1801.04381v4

  12. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K.: Squeezenet: Alexnet-level accuracy with 50x fewer parameters and<0.5mb model size, pp. 1–13 (2016). arXiv:1602.07360

  13. Miura, N.; Nagasaka, A.; Miyatake, T.: Feature extraction of finger-vein patterns based on repeated line tracking and its application to personal identification. Mach. Vis. Appl. 15(4), 194–203 (2004)

    Article  Google Scholar 

  14. Liu, T.; Xie, J.B.; Yan, W.; et al.: An algorithm for finger-vein segmentation based on modified repeated line tracking. Imaging Sci. J. 61(6), 491–502 (2013)

    Article  Google Scholar 

  15. Song, W.; Kim, T.; Kim, H.C.; et al.: A finger-vein verification system using mean curvature. Pattern Recognit. Lett. 32(11), 1541–1547 (2011)

    Article  Google Scholar 

  16. Yang, J.; Yang, J.; Shi, Y.: Finger-vein segmentation based on multi-channel even-symmetric Gabor filters. Paper presented at the IEEE international conference on intelligent computing & intelligent systems, Shanghai, China, 20–22 Nov 2009 (2009)

  17. Ojala, T.; Pietikainen, M.; Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  MATH  Google Scholar 

  18. Baochang, Z.; Yongsheng, G.; Sanqiang, Z.; et al.: Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans. Image Process. 19(2), 533–544 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lee, E.C.; Jung, H.; Kim, D.: New finger biometric method using near infrared imaging. Sensors 11(3), 2319–2333 (2011)

    Article  Google Scholar 

  20. Rosdi, B.A.; Shing, C.W.; Suandi, S.A.: Finger vein recognition using local line binary pattern. Sensors 11(12), 11357–11371 (2011)

    Article  Google Scholar 

  21. Yang, G.; Xi, X.; Yin, Y.: Finger vein recognition based on a personalized best bit map. Sensors 12(2), 1738–1757 (2012)

    Article  Google Scholar 

  22. Yang, G.; Xiao, X.; Yin, Y.: Finger vein recognition based on personalized weight maps. Sensors 13(9), 12093–12112 (2013)

    Article  Google Scholar 

  23. Yu, C.; Qin, H.; Cui, Y.; et al.: Finger-vein image recognition combining modified hausdorff distance with minutiae feature matching. Interdiscip. Sci. Comput. Life Sci. 1(4), 280–289 (2009)

    Article  Google Scholar 

  24. Pang, S.; Yin, Y.; Yang, G.; et al.: Rotation Invariant Finger Vein Recognition. Springer, Berlin, German (2012)

    Book  Google Scholar 

  25. Peng, J.; Wang, N.; EI-Latif, A.A., et al.: Finger-vein verification using gabor filter and SIFT feature matching. Paper presented at the 2012 Eighth international conference on intelligent information hiding and multimedia signal processing, Athens, Greece, 18–20 July 2012 (2012)

  26. Liu, F.; Yang, G.; Yin, Y.; et al.: Rotation invariant finger vein recognition. Neurocomputing 145, 75–89 (2014)

    Article  Google Scholar 

  27. A, K.; I, S.; G.E., H.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

  28. Simonyan, K.; Zisserman, A.: Very deep convolutional networks for large-scale image recognition, pp. 1–14 (2014). arXiv:1409.1556

  29. Hong, H.G.; Lee, M.B.; Park, K.R.: Convolutional neural network-based finger-vein recognition using nir image sensors. Sensors 17, 1297 (2017)

    Article  Google Scholar 

  30. Huang, H.; Liu, S.; Zheng, H.; Ni, L.; Zhang, Y.; Li, W.: DeepVein: novel finger vein verification methods based on Deep Convolutional Neural Networks. Paper presented at the 2017 IEEE international conference on identity, security and behavior analysis (ISBA), New Delhi, India, 22–24 Feb 2017 (2017)

  31. Wang, J.; Pan, Z.; Wang, G.; Li, M.; Li, Y.: Spatial pyramid pooling of selective convolutional features for vein recognition. IEEE Access 6, 28563–28572 (2018)

    Article  Google Scholar 

  32. Fang, Y.; Wu, Q.; Kang, W.: A novel finger vein verification system based on two-stream convolutional network learning. Neurocomputing 290, 100–107 (2018)

    Article  Google Scholar 

  33. Xie, C.; Kumar, A.: Finger vein identification using convolutional neural network and supervised discrete hashing. Pattern Recognit. Lett. 119, 148–156 (2019)

    Article  Google Scholar 

  34. Yang, W.; Hui, C.; Chen, Z.; Xue, J.; Liao, Q.: Fv-gan: finger vein representation rsing generative adversarial networks. IEEE Trans. Inf. Forensics Secur. 14(9), 2512–2524 (2019)

    Article  Google Scholar 

  35. Zhang, J.; Lu, Z.; Li, M.; Wu, H.: Gan-based image augmentation for finger-vein biometric recognition. IEEE Access 7, 183118–183132 (2019)

    Article  Google Scholar 

  36. Choi, J.; Noh, K.J.; Cho, S.W.; Nam, S.H.; Owais, M.; Park, K.R.: Modified conditional generative adversarial network-based optical blur restoration for finger-vein recognition. IEEE Access 8, 16281–16301 (2020)

    Article  Google Scholar 

  37. Kamaruddin, N.M.; Rosdi, B.A.: Spatial pyramid pooling of selective convolutional features for vein recognition. IEEE Access 7, 132966–132978 (2019)

    Article  Google Scholar 

  38. Genovese, A.; Piuri, V.; Plataniotis, K.N.; Scotti, F.: Palmnet: Gabor-pca convolutional networks for touchless palmprint recognition. IEEE Trans. Inf. Forensics Secur. 14(12), 3160–3174 (2019)

    Article  Google Scholar 

  39. Hou, B.; Yan, R.: Convolutional autoencoder model for finger-vein verification. IEEE Trans. Instrum. Meas. 69(5), 2067–2074 (2020)

    Article  Google Scholar 

  40. Gumusbas, D.; Yildirim, T.; Kocakulak, M.; Acir, N.: Capsule network for finger-vein-based biometric identification. Paper presented at the 2019 IEEE symposium series on computational intelligence (SSCI), Xiamen, China, 6–9 Dec 2019 (2019)

  41. Song, J.M.; Kim, W.; Park, K.R.: Finger-vein recognition based on deep densenet using composite image. IEEE Access 7, 66845–66863 (2019)

    Article  Google Scholar 

  42. Noh, K.J.; Choi, J.; Hong, J.S.; Park, K.R.: Finger-vein recognition based on densely connected convolutional network using score-level fusion with shape and texture images. IEEE Access 8, 96748–96766 (2020)

    Article  Google Scholar 

  43. Jalilian, E.; Uhl, A.: Finger-vein recognition using deep fully convolutional neural semantic segmentation networks: the impact of training data. Paper presented at the 2018 IEEE international workshop on information forensics and security (WIFS), Hong Kong, China, 11–13 Dec 2018 (2018)

  44. Zeng, J.; Wang, F.; Deng, J.; Qin, C.; Zhai, Y.; Gan, J.; Piuri, V.: Finger vein verification algorithm based on fully convolutional neural network and conditional random field. IEEE Access 8, 65402–65419 (2020)

    Article  Google Scholar 

  45. Kuzu, R.S.; Piciucco, E.; Maiorana, E.; Campisi, P.: On-the-fly finger-vein-based biometric recognition using deep neural networks. IEEE Trans. Inf. Forensics Secur. 15, 2641–2654 (2020)

    Article  Google Scholar 

  46. Yin, Y.; Zhang, R.; Liu, P.; Deng, W.; He, S.; Li, C.; Zhang, J.: Artificial neural networks for finger vein recognition: a survey, pp. 1–83 (2022). arXiv: 2208.13341v1, arXiv: 2208.13341

  47. Hou, B.; Zhang, H.; Yan, R.: Finger-vein biometric recognition: a review. IEEE Trans. Instrum. Meas. 71(5020426), 1–26 (2022). https://doi.org/10.1109/TIM.2022.3200087

    Article  Google Scholar 

  48. Wang, K.; Chen, G.; Chu, H.: Finger vein recognition based on multi-receptive field bilinear convolutional neural network. IEEE Signal Process. Lett. 28, 1590–1594 (2021). https://doi.org/10.1109/LSP.2021.3094998

    Article  Google Scholar 

  49. Chai, T.; Li, J.; Prasad, S.; Lu, Q.; Zhang, Z.: Shape-driven lightweight CNN for finger-vein biometrics. J. Inf. Secur. Appl. 67(103211), 1–10 (2022). https://doi.org/10.1016/j.jisa.2022.103211

    Article  Google Scholar 

  50. Ren, H.; Sun, L.; Guo, J.; Han, C.; Wu, F.: Finger vein recognition system with template protection based on convolutional neural network. Knowl. Based Syst. 227(107159), 1–13 (2021). https://doi.org/10.1016/j.knosys.2021.107159

    Article  Google Scholar 

  51. Shao, L.; Ren, H.; Sun, L.; Han, C.; Guo, J.: Template protection based on chaotic map for finger vein recognition. IEEJ Trans. Electr. Electron. Eng. 17(1), 82–95 (2022). https://doi.org/10.1002/tee.23490

    Article  Google Scholar 

  52. Ren, H.; Sun, L.; Guo, J.; Han, C.: A dataset and benchmark for multimodal biometric recognition based on fingerprint and finger vein. IEEE Trans. Inf. Forensics Secur. 17, 2030–2043 (2022). https://doi.org/10.1109/TIFS.2022.3175599

    Article  Google Scholar 

  53. Krishnan, A.; Thomas, T.; Mishra, D.: Finger vein pulsation-based biometric recognition. IEEE Trans. Inf. Forensics Secur. 16, 5034–5044 (2021). https://doi.org/10.1109/TIFS.2021.3122073

    Article  Google Scholar 

  54. Kauba, C.; Drahanský, M.; Nováková, M.; Uhl, A.; Rydlo, Š: Three-dimensional finger vein recognition: a novel mirror-based imaging device. J. Imaging 8(5), 1–24 (2022). https://doi.org/10.3390/jimaging8050148

    Article  Google Scholar 

  55. Yang, L.; Yang, G.; Wang, K.; Hao, F.; Yin, Y.: Finger vein recognition via sparse reconstruction error constrained low-rank representation. IEEE Trans. Inf. Forensics Secur. 16, 4869–4881 (2021). https://doi.org/10.1109/TIFS.2021.3118894

    Article  Google Scholar 

  56. Ma, H.; Hu, N.; Fang, C.: The biometric recognition system based on near-infrared finger vein image. Infrared Phys. Technol. 116(103734), 1–12 (2021). https://doi.org/10.1016/j.infrared.2021.103734

    Article  Google Scholar 

  57. Fang, C.; Ma, H.; Yang, Z.; Tian, W.: A finger-vein recognition method based on double-weighted group sparse representation classification. Int. J. Mach. Learn. Cybern. 13(9), 2725–2744 (2022). https://doi.org/10.1007/s13042-022-01558-y

    Article  Google Scholar 

  58. Zhang, Z.; Wang, M.: A simple and efficient method for finger vein recognition. Sensors 22(6), 1–14 (2022). https://doi.org/10.3390/s22062234

    Article  Google Scholar 

  59. Zhang, L.; Sun, L.; Li, W.; Zhang, J.; Cai, W.; Cheng, C.; Ning, X.: A joint bayesian framework based on partial least squares discriminant analysis for finger vein recognition. IEEE Sens. J. 22(1), 785–794 (2022). https://doi.org/10.1109/JSEN.2021.3130951

    Article  Google Scholar 

  60. Li, S.; Ma, R.; Fei, L.; Zhang, B.: Learning compact multi-representation feature descriptor for finger-vein recognition. IEEE Trans. Inf. Forensics Secur. 17, 1946–1958 (2022). https://doi.org/10.1109/TIFS.2022.3172218

    Article  Google Scholar 

  61. Noh, K.J.; Choi, J.; Hong, J.S.; Park, K.R.: Finger-vein recognition using heterogeneous databases by domain adaption based on a cycle-consistent adversarial network. Sensors (Switzerland) 21(2), 1–28 (2021). https://doi.org/10.3390/s21020524

    Article  Google Scholar 

  62. Huang, J.; Tu, M.; Yang, W.; Kang, W.: Joint attention network for finger vein authentication. IEEE Trans. Instrum. Meas. 70(2513911), 1–11 (2021). https://doi.org/10.1109/TIM.2021.3109978

    Article  Google Scholar 

  63. Choi, J.; Hong, J.S.; Owais, M.; Kim, S.G.; Park, K.R.: Restoration of motion blurred image by modified deblurgan for enhancing the accuracies of finger-vein recognition. Sensors 21(14), 1–33 (2021). https://doi.org/10.3390/s21144635

  64. Hou, B.: Triplet-classifier GAN for finger-vein verification. IEEE Trans. Instrum. Meas. 71(2505112), 1–12 (2022)

    Google Scholar 

  65. Li, Y.; Lu, H.; Wang, Y.; Gao, R.; Zhao, C.: ViT-Cap: a novel vision transformer-based capsule network model for finger vein recognition. Appl. Sci. (Switz.) 12(20), 1–18 (2022). https://doi.org/10.3390/app122010364

    Article  Google Scholar 

  66. RMOBF-Net: network for the restoration of motion and optical blurred finger-vein images for improving recognition accuracy. Mathematics 10(21), 3948 (2022). https://doi.org/10.3390/math10213948

  67. Zeng, J.; Zhu, B.; Huang, Y.; Qin, C.; Zhu, J.; Wang, F.; Zhai, Y.; Gan, J.; Chen, Y.; Wang, Y.; Labati, R.D.; Piuri, V.; Scotti, F.: Real-time segmentation method of lightweight network for finger vein using embedded terminal technique. IEEE Access 9, 303–316 (2021). https://doi.org/10.1109/ACCESS.2020.3046108

    Article  Google Scholar 

  68. A finger vein feature extraction network fusing global/local features and its lightweight network. Evolving Systems, pp. 1–17 (2022). https://doi.org/10.1007/s12530-022-09475-9

  69. Shen, J.; Liu, N.; Xu, C.; Sun, H.; Xiao, Y.; Li, D.; Zhang, Y.: Finger vein recognition algorithm based on lightweight deep convolutional neural network. IEEE Trans. Instrum. Meas. 71(5000413), 1–13 (2022). https://doi.org/10.1109/TIM.2021.3132332

    Article  Google Scholar 

  70. Zhang, Z.; Zhong, F.; Kang, W.: Study on reflection-based imaging finger vein recognition. IEEE Trans. Inf. Forensics Secur. 17, 2298–2310 (2022). https://doi.org/10.1109/TIFS.2021.3093791

    Article  Google Scholar 

  71. Facebook: PyTorch. Available online: https://pytorch.org/ (2021)

  72. Google: TensorFlow. Available online: https://www.tensorflow.org/ (2021)

  73. Baidu: PaddlePaddle. Available online: https://www.paddlepaddle.org.cn/ (2021)

  74. Howard, A.; Sandler, M.; Chu, G.: Searching for mobilenetv3, pp. 1–11 (2019). arXiv:1905.02244v5

  75. Hadsell, R.; Chopra, S.; Lecun, Y.: Dimensionality reduction by learning an invariant mapping. Paper presented at the IEEE conference on computer vision and pattern recognition, New York, NY, USA, 17–22 June 2006 (2006)

  76. Maltoni, D.; Maio, D.; Jain, A.; Prabhakar, S.: Ch synthetic fingerprint generation. In: Handbook of Fingerprint Recognition. vol. 33(5–6), p. 1314 (2005)

  77. Deng, L.: The mnist database of handwritten digit images for machine learning research. IEEE Signal Process. Mag. 29(6), 141–142 (2012)

    Article  Google Scholar 

  78. Krizhevsky, A.; Hinton, G.: Learning multiple layers of features from tiny images. In: Handbook of Systemic Autoimmune Diseases, vol. 1(4) (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Dong.

Appendix A

Appendix A

According to the definition of kernel in Eqs. (4) and (1), the elements \(K_{\text {real}}^{\Theta }\) can be re-written as below:

$$\begin{aligned} K_{11}&=e^{c_1} \cos \left( -2\pi \frac{\sin \theta +\cos \theta }{\lambda }+\psi \right) , \end{aligned}$$
(A1a)
$$\begin{aligned} K_{21}&=e^{c_2}\cos \left( -2\pi \frac{\cos \theta }{\lambda }+\psi \right) , \end{aligned}$$
(A1b)
$$\begin{aligned} K_{31}&=e^{c_3}\cos \left( 2\pi \frac{\sin \theta -\cos \theta }{\lambda }+\psi \right) , \end{aligned}$$
(A1c)
$$\begin{aligned} K_{12}&=e^{c_4}\cos \left( -2\pi \frac{\sin \theta }{\lambda }+\psi \right) , \end{aligned}$$
(A1d)
$$\begin{aligned} K_{22}&=\cos \psi , \end{aligned}$$
(A1e)
$$\begin{aligned} K_{32}&=e^{c_4}\cos \left( 2\pi \frac{\sin \theta }{\lambda }+\psi \right) , \end{aligned}$$
(A1f)
$$\begin{aligned} K_{13}&=e^{c_3}\cos \left( -2\pi \frac{\sin \theta -\cos \theta }{\lambda }+\psi \right) , \end{aligned}$$
(A1g)
$$\begin{aligned} K_{23}&=e^{c_2}\cos \left( 2\pi \frac{\cos \theta }{\lambda }+\psi \right) , \end{aligned}$$
(A1h)
$$\begin{aligned} K_{33}&=e^{c_1}\cos \left( 2\pi \frac{\sin \theta +\cos \theta }{\lambda }+\psi \right) , \end{aligned}$$
(A1i)

where

$$\begin{aligned} c_1&= {-\frac{\left( \sin \theta +\cos \theta \right) ^2+\gamma ^2 \left( \sin \theta -\cos \theta \right) ^2}{2\sigma ^2}},\\ c_2&= {-\frac{\cos ^2\theta +\gamma ^2 \sin ^2\theta }{2\sigma ^2}},\\ c_3&= {-\frac{\left( \sin \theta -\cos \theta \right) ^2+\gamma ^2 \left( \sin \theta +\cos \theta \right) ^2}{2\sigma ^2}},\\ c_4&= {-\frac{\sin ^2\theta +\gamma ^2 \cos ^2\theta }{2\sigma ^2}}. \end{aligned}$$

For a given kernel \(T = [t_{ij}]_{3\times 3}\), i.e., the left of the equations are constant, we can transform the original optimization problem to an indirective one in three steps: Step1 First, normalize T according to \(T=t/{ \left|t_{22} \right|}\) to make \(t_{22} \in \{1,-1\}\). Then, according to Eq. (A1e), there exists:

$$\begin{aligned} \psi = \arccos t_{22}, \end{aligned}$$
(A3)

Step2 Let \(x = 2\pi sin \theta / \lambda \) and \(y = 2 \pi cos \theta / \lambda \), and substitute x, y, and \(\psi \) into Eqs. (A1b), (A1d), (A1f), and (A1h), respectively. Then, we have

$$\begin{aligned} \begin{array}{c} \dfrac{t_{12}}{t_{32}}=\dfrac{\cos x\cos \psi +\sin x\sin \psi }{\cos x\cos \psi -\sin x\sin \psi }, \\ \dfrac{t_{21}}{t_{23}}=\dfrac{\cos y\cos \psi +\sin y\sin \psi }{\cos y\cos \psi -\sin y\sin \psi }. \end{array} \end{aligned}$$
(A4)

The solution of Eq. (A4) is

$$\begin{aligned} \begin{array}{c} x=a \pi +\arctan c_5,\\ y=b \pi +\arctan c_6. \end{array} \end{aligned}$$
(A5)

where \(c_5\!=\!\dfrac{t_{12}cos\psi -t_{32}cos\psi }{t_{12}sin\psi -t_{32}sin\psi }\) and \(c_6\!=\!\dfrac{t_{21}cos\psi -t_{23}cos\psi }{t_{21}sin\psi -t_{23}sin\psi }\), and \(a,b \in \mathbb {Z}\) are to be determined. Thus, \(\theta \) and \(\lambda \) are functions of a and b, which are written as \(\theta (a,b)\) and \(\lambda (a,b)\), satisfying the relation below:

$$\begin{aligned} {\left\{ \begin{array}{ll} \sin \theta -\frac{1}{2\pi }\left( a\pi +\textrm{arc}\tan a \right) \lambda =0\\ \cos \theta -\frac{1}{2\pi }\left( bpi +\textrm{arc}\tan b \right) \lambda =0 \\ \end{array}\right. } \end{aligned}$$
(A6)

Step3 Given a group of (ab), substituting \(\psi \), \(\theta (a,b)\), and \(\lambda (a,b)\) into Eqs. (A1b), (A1d), (A1f), and (A1h), we can obtain a solution \(\Theta (a,b)\) and the PDK \(K_{\text {real}}^{\Theta (a,b)}\). However, \(\Theta (a,b)\) may not satisfy Eqs. (A1a), (A1c), (A1g), and (A1i). Thus, the original optimal solution is transformed to search a group of (ab) that minimizes

$$\begin{aligned} J=\sum _{i=1,3}{\sum _{j=1,2}{\Vert t_{ij}-K_{ij}^{\Theta (a,b)} \Vert _2}}, \end{aligned}$$
(A7)

Because nearly all of the elements of the kernel lie in \([-3,3]\), we can narrow the region of (ab) to \([-10,10]\).

\(\varepsilon _{\text {oval},i,j}\) and \(\varepsilon _{\text {cos},i,j}\) can be calculated in the same manner.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Dong, S., Li, W. et al. Finger Vein Recognition Based on Oval Parameter-Dependent Convolutional Neural Networks. Arab J Sci Eng 48, 10841–10856 (2023). https://doi.org/10.1007/s13369-023-07818-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07818-5

Keywords

Navigation