Skip to main content
Log in

Estimations for the Production Cross Sections of Medical 61, 64, 67Cu Radioisotopes by Using Bayesian Regularized Artificial Neural Networks in (p, α) Reactions

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Copper (Cu), which is produced in cyclotrons or reactors, is a significant tracer in the human body. Bayesian regularized artificial neural networks (ANNs) algorithm, which is one of the ANN approaches, was used in analyzing the production cross sections of 61Cu, 64Cu, and 67Cu radioisotopes in \(\left( {p,\;\alpha } \right)\) reactions in the present study. The production cross sections of 61Cu, 64Cu, and 67Cu radioisotopes in \(\left( {p,\;\alpha } \right)\) reactions were assessed by making use of the ANN algorithm and TALYS 1.95 codes. The estimated cross section data were then compared to the data found in the TALYS-Based Evaluated Nuclear Reaction Library 2019 (TENDL) and Experimental Nuclear Reaction Data (EXFOR) Library. ANN results were shown to yield successful correlation coefficients of 0.99477, 0.98665, and 0.99313 for training, testing, and all processes, respectively. Furthermore, the mean square error (MSE) results of ANN prediction were calculated to be 3.6 (training) and 11.84 (testing) mb for all the (p,\(\alpha\).) reactions. It was concluded that the ANN algorithm yielded successful results since ANN estimations were suitable for experimental data, TALYS 1.95 calculations, and TENDL data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wadas, T.J.; Wong, E.H.; Weisman, G.R.; Anderson, C.J.: Copper chelation chemistry and its role in copper radiopharmaceuticals. Curr. Pharm. Des. 13, 3–16 (2007)

    Article  Google Scholar 

  2. Szymański, P.; Frączek, T.; Markowicz, M.; Mikiciuk-Olasik, E.: Development of copper based drugs, radiopharmaceuticals and medical materials. Biometals 25, 1089–1112 (2012)

    Article  Google Scholar 

  3. IAEA, Therapeutic radiopharmaceuticals labelled with copper-67, Rhenium-186 and Scandium-47. https://www.iaea.org/publications/14793/therapeutic radiopharmaceuticals-labelled-with-copper-67-rhenium-186-and-scandium-47 (2021). Accessed 10 Sept 2021

  4. Merrick, M.J.; Rotsch, D.A.; Tiwari, A.; Nolen, J.; Brossard, T.; Song, J.; Wadas, T.J.; Sunderland, J.; Graves, S.: Imaging and dosimetric characteristics of 67Cu. Phys. Med. Biol. 66, 035002 (2021)

    Article  Google Scholar 

  5. Muramatsu, H.; Shirai, E.; Nakahara, H.; Murakami, Y.: Alpha particle bombardment of natural nickel target for the production of 61Cu. Int. J. Appl. Radiat. Isot. 29, 611–614 (1978)

    Article  Google Scholar 

  6. McCarthy, D.W.; Bass, L.A.; Cutler, P.D.; Shefer, R.E.; Klinkowstein, R.E.; Herrero, P.; Lewis, J.S.; Cutler, C.S.; Anderson, C.J.; WelchHigh, M.J.: purity production and potential applications of copper-60 and copper-61. Nucl. Med. Biol. 26, 351–358 (1999)

    Article  Google Scholar 

  7. Cutler, C.S.; Lewis, J.S.; Anderson, C.J.: Utilization of metabolic, transport and receptor-mediated processes to deliver agents for cancer diagnosis. Adv. Drug. Deliver. Rev. 37, 189–211 (1999)

    Article  Google Scholar 

  8. Anderson, C.J.; Connett, J.M.; Schwarz, S.W.; Rocque, P.A.; Guo, L.W.; Philpott, G.W.; Zinn, K.R.; Meares, C.F.; Welch, M.J.: Copper- 64-labeled antibodies for PET imaging. J. Nucl. Med. 33, 1685–1691 (1992)

    Google Scholar 

  9. McCarthy, D.W.; Shefer, R.E.; Klinkowstein, R.E.; Bass, L.A.; Margeneau, W.H.; Cutler, C.S.; Anderson, C.J.; Welch, M.J.: Efficient production of high specific activity 64Cu using a biomedical cyclotron. Nucl. Med. Biol. 24, 35–43 (1997)

    Article  Google Scholar 

  10. Hilgers, K.; Stoll, T.; Skakun, Y.; Coenen, H.H.; Qaim, S.M.: Cross section measurements of the nuclear reactions natZn(d, x)64Cu, 66Zn(d, a)64Cu and 68Zn(p, an) 64Cu for production of 64Cu and technical developments for small-scale production of 67Cu via the 70Zn(p, a)67Cu process. Appl. Radiat. Isot. 59, 343–351 (2003)

    Article  Google Scholar 

  11. Berry, J.; D, Torres Martin de Rosales R, Charoenphun P, J Blower P,: Dithiocarbamate complexes as radiopharmaceuticals for medical imaging. Mini. Rev. Med. Chem. 12(12), 1174–1183 (2012)

    Article  Google Scholar 

  12. Packard, A.B.; Kronauge, J.F.; Barbarics, E.; Kiani, S.; Treves, S.T.: Synthesis and biodistribution of a lipophillic 64Cu-labeled monocationic copper(II) complex. Nucl. Med. Biol. 29(3), 289–294 (2002)

    Article  Google Scholar 

  13. Anderson, C.J.; Lewis, J.S.: Radiopharmaceuticals for targeted radiotherapy of cancer. Exp. Opin. Ther. Patents. 10, 1057–1069 (2000)

    Article  Google Scholar 

  14. Dasgupta, A.K.; Mausner, L.F.; Srivastava, S.C.: A new separation procedure for 67Cu from proton irradiated Zn. Appl. Radiat. Isot. 42, 371–376 (1991)

    Article  Google Scholar 

  15. Schwarzbach, R.; Zimmermann, K.; Bläuenstein, P.; Smith, A.; Schubiger, P.A.: Development of a simple and selective separation of 67Cu from irradiated zinc for use in antibody labelling: a comparison of methods. Appl. Radiation Isotopes 46(5), 329–336 (1995)

    Article  Google Scholar 

  16. Nortier, F.M.; Mills, S.J.; Steyn, G.F.: Excitation functions and yields of relevance to the production of 67Ga by proton bombardment of natZn and natGe up to 100 MeV. Appl. Radiat. Isot. 42, 353–359 (1991)

    Article  Google Scholar 

  17. Szelecsényi, F.; Boothe, T.E.; Tavano, E.; Plitnikas, M.E.; Tarkanyi, F.: Compilation of cross section/thick target yields for 66Ga, 67Ga and 68Ga production using zinc targets up to 30MeV proton energy. Appl. Radiat. Isot. 45, 473–500 (1994)

    Article  Google Scholar 

  18. Üncü, Y.A.; Özdoğan, H.; Şekerci, M.; Kaplan, A.: Investigation of the production routes of Palladium-103 and Iodine-125 radioisotopes. Radiat. Phys. Chem. 204, 110658 (2023)

    Article  Google Scholar 

  19. Dellepiane, G.; Casolaro, P.; Mateu, I.; Scampoli, P.; Braccini, S.: Alternative routes for 64Cu production using an 18 MeV medical cyclotron in view of theranostic applications. Appl. Radiat. Isot. 191, 110518 (2023)

    Article  Google Scholar 

  20. Amanuel, K.F.: Production of 68Ge, 68Ga, 67Ga, 65Zn, and 64Cu important radionuclides for medical applications: theoretical model predictions for α-particles with 66Zn at ≈10–40 MeV. Radiochim. Acta. 172(1), 109674 (2022)

    Google Scholar 

  21. Szelecsényi, F.; Kovács, Z.; Nagatsu, K.; Zhang, M.-R.; Suzuki, K.: Production cross sections of radioisotopes from 3He-particle induced nuclear reactions on natural titanium. Appl. Radiat. Isot. 119, 94–100 (2017)

    Article  Google Scholar 

  22. Choudhury, D.; Lahiri, S.: Production cross sections of 190–193Au radioisotopes produced from 11B + natW reactions up to 63 MeV projectile energy. Eur. Phys. J. A 55, 168 (2019)

    Article  Google Scholar 

  23. Ali, S.K.I.; Khandaker, M.U.; Al-Mugren, K.S.; Latif, S.A.; Bradley, D.A.; Okhunov, A.A.; Sulieman, A.: Evaluation of production cross-sections for theranostic 67Cu radionuclide via proton induced nuclear reaction on 68Zn target. Appl Radiat Isot. 173, 109735 (2021)

    Article  Google Scholar 

  24. Kumara, P.; Sneh Lata, G.; Nandyc, M.: Production cross sections and induced activity in GE isotopes by 30 MeV proton beam. Indian J. Pure Appl. Phys. 59, 330–334 (2021)

    Google Scholar 

  25. Kaplan, A.; Sarpün, İH.; Aydın, A.; Tel, E.; Çapalı, V.; Özdoǧan, H.: (γ, 2n)-Reaction cross-section calculations of several even-even lanthanide nuclei using different level density models. Phys. Atom. Nuclei. 78, 53–64 (2015)

    Article  Google Scholar 

  26. Özdoğan, H.: Theoretical calculations of production cross sections for the 201Pb 111In 18F and 11C radioisotopes at proton induced reactions. Appl. Radiat. Isot. 143, 1–5 (2019)

    Article  Google Scholar 

  27. Yiğit, M.: Analysis of cross sections of (n, t) nuclear reaction using different empirical formulae and level density models. Appl. Radiat. Isot. 139, 151–158 (2018)

    Article  Google Scholar 

  28. Özdoğan, H.; Şekerci, M.; Kaplan, A.: Investigation of gamma strength functions and level density models effects on photon induced reaction cross–section calculations for the fusion structural materials 46,50Ti, 51V, 58Ni and 63Cu. Appl. Radiat. Isot. 143, 6–10 (2019)

    Article  Google Scholar 

  29. Şekerci, M.; Özdoğan, H.; Kaplan, A.: An investigation of effects of level density models and gamma ray strength functions on cross-section calculations for the production of 90Y, 153Sm, 169Er, 177Lu and 186Re therapeutic radioisotopes via (n, g) reactions. Radiochim. Acta. 108(1), 11–17 (2020)

    Article  Google Scholar 

  30. Kaplan, A.; Şekerci, M.; Çapalı, V.; Özdoğan, H.: Photon induced reaction cross-section calculations of several structural fusion materials. J. Fusion Energy. 36(6), 213–217 (2017)

    Article  Google Scholar 

  31. Şekerci, M.: An investigation of the effects of level density models and alpha optical model potentials on the cross-section calculations for the production of the radionuclides 62Cu, 67Ga, 86Y and 89Zr via some alpha induced reactions. Radiochim. Acta. 108(6), 459–467 (2020)

    Article  MathSciNet  Google Scholar 

  32. Şekerci, M.; Özdoğan, H.; Kaplan, A.: Effects of combining some theoretical models in the cross-section calculations of some alpha-induced reactions for natSb. Appl. Radiat. Isot. 186, 110255 (2022)

    Article  Google Scholar 

  33. Özdoğan, H.; Sarpün, İH.; Şekerci, M.; Kaplan, A.: Production cross-section calculations of 111in via Proton and alpha-induced nuclear reactions. Mod. Phys. Lett. A. 36(08), 2150051 (2021)

    Article  Google Scholar 

  34. Konobeyev, A.Y.; Fischer, U.; Pereslavtsev, P.E.: Computational approach for evaluation of nuclear data including covariance information. J. Korean Phys. Soc. 59(3), 923–926 (2011)

    Article  Google Scholar 

  35. Konobeyev, AYu.; Fischer, U.; Capote, R.: Improved data evaluation methodology for energy ranges with missing experimental data. Kerntechnik 80(3), 194–200 (2015)

    Article  Google Scholar 

  36. Konobeyev, AYu.; Fischer, U.; Koning, A.J.; Leeb, H.; Lerayand, S.; Yariv, Y.: What can we expect from the use of nuclear models implemented in MCNPX at projectile energies below 150 MeV? Detailed comparision with experimental data. J. Korean Phys. Soc. 59(3), 927–930 (2011)

    Article  Google Scholar 

  37. Gomez-Fernandez, M.; Higley, K.; Tokuhiro, A.; Welter, K.; Wong, W.K.; Yang, H.: Status of research and development of learning-based approaches in nuclear science and engineering: a review. Nucl. Eng. Des. 359, 110479 (2020)

    Article  Google Scholar 

  38. Boehnlein, A.; Diefenthaler, M.; Sato, N.; Schram, M.; Ziegler, V.; Fanelli, C.; Hjorth-Jensen, M.; Horn, T.; Kuchera, M.P.; Lee, D.; Nazarewicz, W.; Ostroumov, P.; Orginos, K.; Poon, A.; Wang, X.-N.; Scheinker, A.; Smith, M.S.; Pang, L.-G.: Colloquium: machine learning in nuclear physics. Rev. Mod. Phys. 94(3), 031003 (2022)

    Article  Google Scholar 

  39. Akkoyun, S.: Estimation of fusion reaction cross-sections by artificial neural networks. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Int. Mater. Atoms. 462, 51–54 (2020)

    Article  Google Scholar 

  40. Özdoğan, H.: Estimation of (n, p) reaction cross sections at 14.5∓ 0.5 MeV neutron energy by using artificial neural network. Appl. Radiation Isotopes. 170, 109584 (2021)

    Article  Google Scholar 

  41. Özdoğan, H.; Üncü, Y.A.; Şekerci, M.; Kaplan, A.: A study on the estimations of (n, t) reaction cross-sections at 14.5 MeV by using artificial neural network. Mod. Phys. Lett. A. 36(23), 2150168 (2021)

    Article  Google Scholar 

  42. Özdoğan, H.; Üncü, Y.A.; Karaman, O.; Şekerci, M.; Kaplan, A.: Estimations of giant dipole resonance parameters using artificial neural network. Appl. Radiat. Isot. 169, 109581–109589 (2021)

    Article  Google Scholar 

  43. Özdoğan, H.; Üncü, Y.A.; Şekerci, M.; Kaplan, A.: Estimations of level density parameters by using artificial neural network for phenomenological level density models. Appl. Radiat. Isot. 169, 109583–109583 (2021)

    Article  Google Scholar 

  44. Athanassopoulos, S.; Mavrommatis, E.; Gernoth, K.A.; Clark, J.W.: Nuclear mass systematics using neural networks. Nucl. Phys. A. 743(4), 222–235 (2004)

    Article  Google Scholar 

  45. Özdoğan, H.; Üncü, Y.A.; Şekerci, M.; Kaplan, A.: Mass excess estimations using artificial neural networks. Appl. Radiat. Isot. 184, 110162 (2022)

    Article  Google Scholar 

  46. Mumpower, M.R.; Sprouse, T.M.; Lovell, A.E.; Mohan, A.T.: Physically interpretable machine learning for nuclear masses. Phys. Rev. C. 106(2), L021301-L21306 (2022)

    Article  Google Scholar 

  47. Kaplan, A.; Özdoğan, H.; Aydın, A.; Tel, E.: Deuteron-induced cross section calculations of some structural fusion materials. J. Fusion Energ. 32, 97–102 (2013)

    Article  Google Scholar 

  48. Kaplan, A.; Özdoğan, H.; Aydın, A.; Tel, E.: (γ,2n) reaction cross section calculations on several structural fusion materials. J. Fusion Energ. 32, 431–436 (2013)

    Article  Google Scholar 

  49. Yiğit, M.; Tel, E.: Nuclear model calculation for production of 18F, 22Na, 44,46Sc, 54Mn, 64Cu, 68Ga, 76Br and 90Y radionuclides used in medical applications. Ann. Nucl. Energy. 69, 44–50 (2014)

    Article  Google Scholar 

  50. Yiğit, M.; Kara, A.: Simulation study of the proton-induced reaction cross sections for the production of 18F and 66–68Ga radioisotopes. J. Radioanal. Nucl. Chem. 314, 2383–2392 (2017)

    Article  Google Scholar 

  51. Yiğit, M.: A new study on pre-equilibrium and equilibrium effects of excitation functions of alpha-induced reactions on 51V, 55Mn and 59Co nuclei. Appl. Radiat. Isot. 148, 108–113 (2019)

    Article  Google Scholar 

  52. Yiğit, M.: Study on (n, p) reactions of 58,60,61,62,64Ni using new developed empirical formulas. Nucl. Eng. Technol. 52(4), 791–796 (2020)

    Article  Google Scholar 

  53. Yiğit, M.: Study of cross sections for (n, p) reactions on Hf, Ta and W isotopes. Appl. Radiat. Isot. 174, 109779 (2021)

    Article  Google Scholar 

  54. Koning, A.J.; Rochman, D.; Sublet, J.-C.; Dzysiuk, N.; Fleming, M.; van der Marck, S.: TENDL: complete nuclear data library for innovative nuclear science and technology. Nucl. Data Sheets. 155, 1–55 (2019)

    Article  Google Scholar 

  55. Lázaro, E.; Armero, C.; Alvares, D.: Bayesian regularization for flexible baseline hazard functions in cox survival models. Biom. J. 63(1), 7–26 (2021)

    Article  MathSciNet  Google Scholar 

  56. Burden, F.; Winkler, D.: Bayesian regularization of neural networks. Methods Mol. Biol. 458, 25–44 (2008)

    Google Scholar 

  57. Ignatyuk, A.V.; Istekov, K.K.; Smirenkin, G.N.: Role of collective effects in the systematics of nuclear level nensities. Yad. Fiz. 29, 875–883 (1979)

    Google Scholar 

  58. Ignatyuk, A.V.; Smirenkin, G.N.; Tishin, A.S.: Phenomenological description of the energy dependence of the level density parameter. Sov. J. Nucl. Phys. 21(3), 485–490 (1975)

    Google Scholar 

  59. Baba, H.: A shell-model nuclear level density. Nucl. Phys. A. 159, 625–641 (1970)

    Article  Google Scholar 

  60. Otuka, N., et al.: Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): international collaboration between nuclear reaction data centres (NRDC). Nucl. Data Sheets. 120, 272–276 (2014)

    Article  Google Scholar 

  61. Koning, A.; Hilaire, S.; Goriely, S.: TALYS–1.96/2.0 A nuclear reaction program, user manual, 1st ed. NRG, The Netherlands. https://www-nds.iaea.org/talys/tutorials/talys_v1.96.pdf. (2019). Accessed 16 May 2022

  62. Levkovski, V.N.: Act.Cs. By Protons and alphas, cross sections of medium mass nuclide activation (A=40–100) by medium energy protons and alpha-particles (E=10– 50 MeV). Moskova. https://www-nds.iaea.org/exfor//servlet/X4sGetReacTabl?reqx=16826&subID=100510179&pointer(1991). Accessed 12 May 2022

  63. Cohen, B.L.; Newman, E.; Charpie, R.A.; Handley, T.H.: (p, pn) and (p, αn) excitation functions. Phys. Rev. 94(3), 620–625 (1954)

    Article  Google Scholar 

  64. Szelecsényi, F.; Kovács, Z.; Nagatsu, K.; Zhang, M.R.; Suzuki, K.: Excitation function of (p, α) nuclear reaction on enriched 67Zn: possibility of production of 64Cu at low energy cyclotron. Radiochim. Acta. 102, 465–472 (2014)

    Article  Google Scholar 

  65. Kastleiner, S.; Coenen, H.H.; Qaim, S.M.: Possibility of production of 67Cu at a small-sized cyclotron via the (p, α)-reaction on enriched 70Zn. Radiochim. Acta. 84, 107–110 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Özdoğan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Üncü, Y.A., Özdoğan, H. Estimations for the Production Cross Sections of Medical 61, 64, 67Cu Radioisotopes by Using Bayesian Regularized Artificial Neural Networks in (p, α) Reactions. Arab J Sci Eng 48, 8173–8179 (2023). https://doi.org/10.1007/s13369-023-07801-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07801-0

Keywords

Navigation