Skip to main content

Advertisement

Log in

Enhanced Photocatalytic Degradation of ZnTiO3/Polycarbazole (PCz) Composite Towards Toxic Azo Dye

  • Research Article-physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The ZnTiO3 material was synthesized by sol–gel method with the assistance of ethanol as solvent. The oxidative polymerization method was used to synthesize polycarbazole (PCz). The ball milling technique was employed to synthesize the mechanically composited nanoparticles—ZnTiO3/PCz nanocomposite. The synthesized composites were analysed using powder X-ray diffraction (PXRD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectrum (XPS), UV–Vis absorption spectrum (UV–Vis), scanning electron microscope (SEM), and high-resolution transmission electron microscope (HRTEM). The degradation of crystal violet (CV) in water under visible-light irradiation was used to assess the photocatalytic behaviour of the synthesized catalyst. The result shows that the ZnTiO3/PCz composites exhibit greater photocatalytic activity than other materials. Polycarbazole in composite material acts as an electron reservoir, actively trapping the photogenerated electrons which considerably lowers the probability of recombination and increases the degrading effect of the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

On reasonable request, the corresponding author will provide the entire datasets created during and/or analysed during the current work.

References

  1. Kong, J.-Z.; Li, A.-D.; Zhai, H.-F.; Li, H.; Yan, Q.-Y.; Ma, J.; Wu, D.: Preparation, characterization and photocatalytic properties of ZnTiO3 powders. J. Hazard. Mater. 171, 918–923 (2009). https://doi.org/10.1016/j.jhazmat.2009.06.092

    Article  Google Scholar 

  2. Padmanaban, A.; Murugadoss, G.; Venkatesh, N.; Hazra, S.; Rajesh Kumar, M.; Tamilselvi, R.; Sakthivel, P.: Electrochemical determination of harmful catechol and rapid decolorization of textile dyes using ceria and tin doped ZnO nanoparticles. J. Environ. Chem. Eng. 9, 105976 (2021). https://doi.org/10.1016/j.jece.2021.105976

    Article  Google Scholar 

  3. Nikfar, S.; Jaberidoost, M.: Dyes and colorants. In: Wexler, P. (Ed.) Encyclopedia of Toxicology, 3rd edn., pp. 252–261. Academic Press, Oxford (2014)

    Chapter  Google Scholar 

  4. Chai, W.S.; Cheun, J.Y.; Kumar, P.S.; Mubashir, M.; Majeed, Z.; Banat, F.; Ho, S.-H.; Show, P.L.: A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J. Clean. Prod. 296, 126589 (2021). https://doi.org/10.1016/j.jclepro.2021.126589

    Article  Google Scholar 

  5. Cheng, S.Y.; Show, P.-L.; Juan, J.C.; Chang, J.-S.; Lau, B.F.; Lai, S.H.; Ng, E.P.; Yian, H.C.; Ling, T.C.: Landfill leachate wastewater treatment to facilitate resource recovery by a coagulation-flocculation process via hydrogen bond. Chemosphere 262, 127829 (2021). https://doi.org/10.1016/j.chemosphere.2020.127829

    Article  Google Scholar 

  6. Kanwar, R.M.A.; Khan, Z.M.; Farid, H.U.: Modeling-based performance evaluation of novel cascade cum trickling filter wastewater treatment system. Int. J. Environ. Sci. Technol. 19, 5015–5028 (2022). https://doi.org/10.1007/s13762-021-03455-3

    Article  Google Scholar 

  7. Wu, C.; Li, Q.: Characteristics of organic matter removed from highly saline mature landfill leachate by an emergency disk tube-reverse osmosis treatment system. Chemosphere 263, 128347 (2021). https://doi.org/10.1016/j.chemosphere.2020.128347

    Article  Google Scholar 

  8. Li, N.; Lu, X.; He, M.; Duan, X.; Yan, B.; Chen, G.; Wang, S.: Catalytic membrane-based oxidation-filtration systems for organic wastewater purification: a review. J. Hazard. Mater. 414, 125478 (2021). https://doi.org/10.1016/j.jhazmat.2021.125478

    Article  Google Scholar 

  9. Yadav, G.; Mishra, A.; Ghosh, P.; Sindhu, R.; Vinayak, V.; Pugazhendhi, A.: Technical, economic and environmental feasibility of resource recovery technologies from wastewater. Sci. Total Environ. 796, 149022 (2021). https://doi.org/10.1016/j.scitotenv.2021.149022

    Article  Google Scholar 

  10. Lambert, T.N.; Chavez, C.A.; Hernandez-Sanchez, B.; Lu, P.; Bell, N.S.; Ambrosini, A.; Friedman, T.; Boyle, T.J.; Wheeler, D.R.; Huber, D.L.: Synthesis and characterization of titania−graphene nanocomposites. J. Phys. Chem. C 113, 19812–19823 (2009). https://doi.org/10.1021/jp905456f

    Article  Google Scholar 

  11. Perween, S.; Ranjan, A.: Improved visible-light photocatalytic activity in ZnTiO3 nanopowder prepared by sol-electrospinning. Sol. Energy Mater. Sol. Cells 163, 148–156 (2017). https://doi.org/10.1016/j.solmat.2017.01.020

    Article  Google Scholar 

  12. Kasinathan, K.; Kennedy, J.; Elayaperumal, M.; Henini, M.; Malik, M.: Photodegradation of organic pollutants RhB dye using UV simulated sunlight on ceria based TiO2 nanomaterials for antibacterial applications. Sci. Rep. 6, 38064 (2016). https://doi.org/10.1038/srep38064

    Article  Google Scholar 

  13. Magdalane, C.M.; Kaviyarasu, K.; Priyadharsini, G.M.A.; Bashir, A.K.H.; Mayedwa, N.; Matinise, N.; Isaev, A.B.; Abdullah Al-Dhabi, N.; Arasu, M.V.; Arokiyaraj, S.; Kennedy, J.; Maaza, M.: Improved photocatalytic decomposition of aqueous Rhodamine-B by solar light illuminated hierarchical yttria nanosphere decorated ceria nanorods. J. Mater. Res. Technol. 8, 2898–2909 (2019). https://doi.org/10.1016/j.jmrt.2018.11.019

    Article  Google Scholar 

  14. Lin, J.; Luo, Z.; Liu, J.; Li, P.: Photocatalytic degradation of methylene blue in aqueous solution by using ZnO–SnO2 nanocomposites. Mater. Sci. Semicond. Process. 87, 24–31 (2018). https://doi.org/10.1016/j.mssp.2018.07.003

    Article  Google Scholar 

  15. Yan, H.; Wang, X.; Yao, M.; Yao, X.: Band structure design of semiconductors for enhanced photocatalytic activity: the case of TiO2. Prog. Nat. Sci. Mater. Int. 23, 402–407 (2013). https://doi.org/10.1016/j.pnsc.2013.06.002

    Article  Google Scholar 

  16. Li, J.; Cui, H.; Mu, D.; Liu, Y.; Guan, T.; Xia, Z.; Jiang, L.; Zuo, J.; Tan, C.; You, H.: Synthesis and characterization of rGO decorated cubic ZnTiO3 rods for solar light-induced photodegradation of rhodamine B. New J. Chem. 43, 3374–3382 (2019). https://doi.org/10.1039/C8NJ01971A

    Article  Google Scholar 

  17. Kim, H.T.; Byun, J.D.; Kim, Y.: Microstructure and microwave dielectric properties of modified zinc titanates(II). Mater. Res. Bull. 33, 975–986 (1998). https://doi.org/10.1016/S0025-5408(98)00057-9

    Article  Google Scholar 

  18. Chen, Z.-X.; van der Eyden, J.; Koot, W.; van den Berg, R.; van Mechelen, J.; Derking, A.: Preparation of zinc titanate thin films by low-pressure metalorganic chemical vapor deposition. J. Am. Ceram. Soc. 78, 2993–3001 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb09075.x

    Article  Google Scholar 

  19. Obayashi, H.; Sakurai, Y.; Gejo, T.: Perovskite-type oxides as ethanol sensors. J. Solid State Chem. 17, 299–303 (1976). https://doi.org/10.1016/0022-4596(76)90135-3

    Article  Google Scholar 

  20. Chen, Z.X.; Derking, A.; Koot, W.; van Dijk, M.P.: Dehydrogenation of isobutane over zinc titanate thin film catalysts. J. Catal. 161, 730–741 (1996). https://doi.org/10.1006/jcat.1996.0235

    Article  Google Scholar 

  21. Sun, W.; Sun, W.; Zhuo, Y.; Chu, Y.: Facile synthesis of Cu2O nanocube/polycarbazole composites and their high visible-light photocatalytic properties. J. Solid State Chem. 184, 1638–1643 (2011). https://doi.org/10.1016/j.jssc.2011.03.055

    Article  Google Scholar 

  22. Zahoor, A.; Qiu, T.; Zhang, J.; Li, X.: Synthesis and characterization of Ag@polycarbazole nanoparticles and their novel optical behavior. J. Mater. Sci. 44, 6054–6059 (2009). https://doi.org/10.1007/s10853-009-3831-y

    Article  Google Scholar 

  23. Singh, S.; Perween, S.; Ranjan, A.: Dramatic enhancement in adsorption of congo red dye in polymer-nanoparticle composite of polyaniline-zinc titanate. J. Environ. Chem. Eng. 9, 105149 (2021). https://doi.org/10.1016/j.jece.2021.105149

    Article  Google Scholar 

  24. Rajabathar, J.R.; Al-lohedan, H.A.; Arunachalam, P.; Issa, Z.A.; Gnanamani, M.K.; Appaturi, J.N.; Ibrahim, S.N.; Mohammed Dahan, W.: Synthesis and characterization of metal chalcogenide modified graphene oxide sandwiched manganese oxide nanofibers on nickel foam electrodes for high performance supercapacitor applications. J. Alloys Compd. 850, 156346 (2021). https://doi.org/10.1016/j.jallcom.2020.156346

    Article  Google Scholar 

  25. An, M.; Li, L.; Wu, Q.; Yu, H.; Gao, X.; Zu, W.; Guan, J.; Yu, Y.: CdS QDs modified three-dimensional ordered hollow spherical ZnTiO3–ZnO–TiO2 composite with improved photocatalytic performance. J. Alloys Compd. 895, 162638 (2022). https://doi.org/10.1016/j.jallcom.2021.162638

    Article  Google Scholar 

  26. Phani, A.R.; Passacantando, M.; Santucci, S.: Synthesis of nanocrystalline ZnTiO3 perovskite thin films by sol–gel process assisted by microwave irradiation. J. Phys. Chem. Solids 68, 317–323 (2007). https://doi.org/10.1016/j.jpcs.2006.09.010

    Article  Google Scholar 

  27. Hino, S.; Nakazato, M.; Matsumoto, K.: X-ray photoelectron spectra of polycarbazole, carbazole and polypyrene: analysis of the origin of peak asymmetry observed in their C 1s spectra. Chem. Phys. 127, 411–417 (1988). https://doi.org/10.1016/0301-0104(88)87139-8

    Article  Google Scholar 

  28. Surendar, T.; Kumar, S.; Shanker, V.: Influence of La-doping on phase transformation and photocatalytic properties of ZnTiO3 nanoparticles synthesized via modified sol–gel method. Phys. Chem. Chem. Phys. 16, 728–735 (2013). https://doi.org/10.1039/C3CP53855A

    Article  Google Scholar 

  29. Dutta, M.; Sarkar, S.; Ghosh, T.; Basak, D.: ZnO/graphene quantum dot solid-state solar cell. J. Phys. Chem. C 116, 20127–20131 (2012). https://doi.org/10.1021/jp302992k

    Article  Google Scholar 

  30. Alkaykh, S.; Mbarek, A.; Ali-Shattle, E.E.: Photocatalytic degradation of methylene blue dye in aqueous solution by MnTiO3 nanoparticles under sunlight irradiation. Heliyon 6, e03663 (2020). https://doi.org/10.1016/j.heliyon.2020.e03663

    Article  Google Scholar 

  31. Zhang, T.; Wang, T.; Meng, F.; Yang, M.; Kawi, S.: Recent advances in ZnIn2S4-based materials towards photocatalytic purification, solar fuel production and organic transformations. J. Mater. Chem. C 10, 5400–5424 (2022). https://doi.org/10.1039/D2TC00432A

    Article  Google Scholar 

Download references

Acknowledgements

The author Jeffery Joseph J acknowledges the Sri Sivasubramaniya Nadar, College of Engineering, in the form of SSN JRA. The author Padmanaban Annamalai gratefully acknowledges to the ANID/FONDECYT Post-doctoral Project No. 3220176, Government of Chile, Santiago.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Joseph John Jeya Kamaraj.

Ethics declarations

Conflict of interest

There are no significant financial or non-financial interests that the authors should disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

John Jeya Kamaraj, J., Annamalai, P., Stephen Tamil, L. et al. Enhanced Photocatalytic Degradation of ZnTiO3/Polycarbazole (PCz) Composite Towards Toxic Azo Dye. Arab J Sci Eng 48, 8143–8151 (2023). https://doi.org/10.1007/s13369-022-07570-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07570-2

Keywords

Navigation