Skip to main content

Advertisement

Log in

State of the Art of Hybrid Solar Stills for Desalination

  • Review Article-systems Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The pressure on freshwater sources increases with population, industrial, and agriculture growth. Solar desalination methods are among the technologies that show great potential for freshwater production through evaporation and condensation processes. Therefore, desalination enhancement may be achieved through enhanced evaporation, condensation, or both processes. The problems facing desalination by traditional solar stills are the low efficiency and low solar yield, around 4 L/m2·day. Many kinds of research have been implemented to enhance the yield of the solar still system at a reasonable cost. The objective of the current article is to critically review and compares the solar yield, efficiency, and production cost of the various hybrid solar desalination systems. Despite their many reviews on solar stills, this review differs from previous reviews as it focuses on the hybrid enhancement methods of solar stills. It is found that some hybrid systems achieved 20 L/m2· days by integration with thermal energy storage, external heat sources, or a combination of external heat sources and thermal energy storage. The performance of each hybrid approach is evaluated to get insight into which combination is most effective. The freshwater production cost of the hybrid solar stills is included in the analysis as a performance indication factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54

Similar content being viewed by others

Abbreviations

SS, SSs:

Solar still, solar stills

DS:

Double slope

PTC:

Parabolic through collector

TES:

Thermal energy storage

PCM:

Phase change material

CSS:

Conventional solar still

CTSS:

Conventional tubular solar still

TC:

Total cost ($)

TSS:

Tubular solar still

CF:

Fixed charge ($)

CM:

Maintenance cost ($)

CO:

Operation cost ($)

CPL:

Cost per liter ($/L/m2)

CPC:

Compound parabolic collector

ETC:

Evacuated tube collector

\({T}_{\mathrm{amb}}\) :

Ambient temperature

\({\dot m}_{\mathrm{ev}}\) :

Mass of evaporated water

\({\eta }_{\mathrm{Thermal}}\) :

Thermal efficiency

\({h}_{\mathrm{fg}}\) :

Evaporation latent heat

\({A}_{\mathrm{collection}\,\mathrm{system}}\) :

Area of the collection system (external)

\({A}_{\mathrm{b}}\) :

Area of the basin

\({I}_{\mathrm{s}}\) :

Solar radiation intensity (W/m2)

T w :

Temperature of water

References

  1. Xiao, G.; Wang, X.; Ni, M.; Wang, F.; Zhu, W.; Luo, Z.; Cen, K.: A review on solar stills for brine desalination. Appl. Energy 103, 642–652 (2013). https://doi.org/10.1016/j.apenergy.2012.10.029

    Article  Google Scholar 

  2. Distribution of Water on the Earth's Surface. https://www.e-education.psu.edu/earth103/node/701

  3. Chang, H.: Water and Climate Change. In International Encyclopedia of Geography (pp. 1–6). Wiley (2019). https://doi.org/10.1002/9781118786352.wbieg0793.pub2

  4. CULPAN, T. (n.d.). Making chips requires lots of water, and Taiwan has a drought. Retrieved July 16, 2021. From https://www.japantimes.co.jp/opinion/2021/03/05/commentary/world-commentary/taiwan-tsmc-semiconductors-water-drought/Distribution of Water on the Earth's Surface. (n.d.). https://www.e-education.psu.edu/earth103/node/701

  5. Skuse, C.; Gallego-Schmid, A.; Azapagic, A.; Gorgojo, P.: Can emerging membrane-based desalination technologies replace reverse osmosis? Desalination 500, 114844 (2021). https://doi.org/10.1016/j.desal.2020.114844

  6. Dutta, N.; Singh, B.; Subbiah, S.; Muthukumar, P.: Performance analysis of a single and multi-staged direct contact membrane distillation module integrated with heat recovery units. Chem. Eng. J. Adv. 4, 100055 (2020). https://doi.org/10.1016/j.ceja.2020.100055

  7. Emamdoost, N.; Jafarian, A.; Kouhikamali, R.: Implementing multiple-effect distillation and reverse osmosis thermal coupling to improve desalination process performance in combined water and power plants. Energy Convers. Manage. 221, 113176 (2020). https://doi.org/10.1016/j.enconman.2020.113176

  8. Kabeel, A.E.; Omara, Z.M.; Younes, M.M.: Techniques used to improve the performance of the stepped solar still—a review. Renew. Sustain. Energy Rev. 46, 178–188 (2015). https://doi.org/10.1016/j.rser.2015.02.053

    Article  Google Scholar 

  9. Amiri, H.; Aminy, M.; Lot, M.; Jafarbeglo, B.: Energy and exergy analysis of a new solar still composed of parabolic trough collector with built-in solar still. 163 (2021). https://doi.org/10.1016/j.renene.2020.09.007

  10. Sahota, L.; Tiwari, G.N.: Effect of nanofluids on the performance of passive double slope solar still: a comparative study using characteristic curve. Desalination 388, 9–21 (2016). https://doi.org/10.1016/j.desal.2016.02.039

    Article  Google Scholar 

  11. Mahian, O.; Kianifar, A.; Heris, S.Z.; Wen, D.; Sahin, A.Z.; Wongwises, S.: Nanofluids effects on the evaporation rate in a solar still equipped with a heat exchanger. Nano Energy 36(February), 134–155 (2017). https://doi.org/10.1016/j.nanoen.2017.04.025

    Article  Google Scholar 

  12. El-maghlany, W.M.: An approach to optimization of double slope solar still geometry for maximum collected solar energy. Alex. Eng. J. 54(4), 823–828 (2015). https://doi.org/10.1016/j.aej.2015.06.010

    Article  Google Scholar 

  13. Kabeel, A.E.; Omara, Z.M.; Essa, F.A.; Abdullah, A.S.; Arunkumar, T.; Sathyamurthy, R.: Augmentation of a solar still distillate yield via absorber plate coated with black nanoparticles. Alex. Eng. J. 56(4), 433–438 (2017). https://doi.org/10.1016/j.aej.2017.08.014

    Article  Google Scholar 

  14. Kabeel, A.E.; Omara, Z.M.; Essa, F.A.: Enhancement of modified solar still integrated with external condenser using nanofluids: An experimental approach. Energy Convers. Manage. 78, 493–498 (2014). https://doi.org/10.1016/j.enconman.2013.11.013

    Article  Google Scholar 

  15. Kabeel, A.E.; Abdelgaied, M.; Mahgoub, M.: The performance of a modified solar still using hot air injection and PCM. Desalination 379, 102–107 (2016). https://doi.org/10.1016/j.desal.2015.11.007

    Article  Google Scholar 

  16. Shoeibi, S.; Rahbar, N.; Abedini Esfahlani, A.; Kargarsharifabad, H.; Abedini, A.; Kargarsharifabad, H.: Improving the thermoelectric solar still performance by using nanofluids—experimental study, thermodynamic modeling and energy matrices analysis. Sustain. Energy Technol. Assess. 47(June), 101339 (2021). https://doi.org/10.1016/j.seta.2021.101339

    Article  Google Scholar 

  17. Sharshir, S.W.; Peng, G.; Wu, L.; Yang, N.; Essa, F.A.; Elsheikh, A.H.; Mohamed, S.I.T.; Kabeel, A.E.: Enhancing the solar still performance using nanofluids and glass cover cooling: experimental study. Appl. Therm. Eng. 113, 684–693 (2017). https://doi.org/10.1016/j.applthermaleng.2016.11.085

    Article  Google Scholar 

  18. Rahbar, N.; Esfahani, J.A.: Experimental study of a novel portable solar still by utilizing the heatpipe and thermoelectric module. Desalination 284, 55–61 (2012). https://doi.org/10.1016/j.desal.2011.08.036

    Article  Google Scholar 

  19. Kabeel, A.E.A.; Omara, Z.M.; Essa, F. A.: Numerical investigation of modified solar still using nanofluids and external condenser. J. Taiwan Inst. Chem. Eng. 75, 77–86 (2017). https://doi.org/10.1016/j.jtice.2017.01.017

  20. Tuly, S.S.; Rahman, M.S.; Sarker, M.R.I.I.; Beg, R.A.: Combined influence of fin, phase change material, wick, and external condenser on the thermal performance of a double slope solar still. J. Clean. Prod. 287, 125458 (2021). https://doi.org/10.1016/j.jclepro.2020.125458

    Article  Google Scholar 

  21. Tiwari, G.N.; Singh, H.N.; Tripathi, R.: Present status of solar distillation. Sol. Energy 75(5), 367–373 (2003). https://doi.org/10.1016/j.solener.2003.07.005

    Article  Google Scholar 

  22. Tiwari, A.K.; Tiwari, G.N.: Effect of water depths on heat and mass transfer in a passive solar still: in summer climatic condition, 195, 78–94 (2006). https://doi.org/10.1016/j.desal.2005.11.014

  23. Thakur, V.K.; Gaur, M.K.K.; Dhamneya, A.K.K.; Sagar, M.K.K.: Performance analysis of passive solar still with and without nanoparticles. Mater. Today Proc (2021). https://doi.org/10.1016/j.matpr.2021.05.539

  24. Velmurugan, V.; Deenadayalan, C.K.; Vinod, H.; Sridhar, K.: Desalination of effluent using fin type solar still, 33, 1719–1727 (2008). https://doi.org/10.1016/j.energy.2008.07.001

  25. Abdullah, A.S.; Omara, Z.M.; Essa, F.A.; Younes, M.M.; Shanmugan, S.; Abdelgaied, M.; Amro, M.I.; Kabeel, A.E.; Farouk, W.M.: Improving the performance of trays solar still using wick corrugated absorber, nano-enhanced phase change material and photovoltaics-powered heaters. J. Energy Storage 40(May), 102782 (2021). https://doi.org/10.1016/j.est.2021.102782

    Article  Google Scholar 

  26. Tiwari, G.N.; Sahota, L.: Advanced Solar-Distillation Systems: Basic Principles, Thermal Modeling, and its Application. Springer, Berlin (2017)

    Book  Google Scholar 

  27. Madiouli, J.; Lashin, A.; Shigidi, I.; Badruddin, I.A.; Kessentini, A.: Experimental study and evaluation of single slope solar still combined with flat plate collector, parabolic trough and packed bed. Solar Energy 196(August 2019), 358–366 (2020). https://doi.org/10.1016/j.solener.2019.12.027

  28. El-Said, E.M.S.; Elshamy, S.M.; Kabeel, A.E.: Performance enhancement of a tubular solar still by utilizing wire mesh packing under harmonic motion. Desalination, 474(October 2019), 114165 (2020). https://doi.org/10.1016/j.desal.2019.114165

  29. Rashidi, S.; Abolfazli Esfahani, J.; Rahbar, N.: Partitioning of solar still for performance recovery: experimental and numerical investigations with cost analysis. Sol. Energy 153, 41–50 (2017). https://doi.org/10.1016/j.solener.2017.05.041

    Article  Google Scholar 

  30. Elshamy, S.M.; El-Said, E.M.S.: Comparative study based on thermal, exergetic and economic analyses of a tubular solar still with semi-circular corrugated absorber. J. Clean. Prod. 195, 328–339 (2018). https://doi.org/10.1016/j.jclepro.2018.05.243

    Article  Google Scholar 

  31. Kabeel, A.E.; Hamed, A.M.; El-Agouz, S.A.: Cost analysis of different solar still configurations. Energy 35(7), 2901–2908 (2010). https://doi.org/10.1016/j.energy.2010.03.021

    Article  Google Scholar 

  32. “Cost Indices—Towering Skills.” https://www.toweringskills.com/financial-analysis/cost-indices/. Accessed Nov 16, 2022.

  33. Kabeel, A.E.; Harby, K.; Abdelgaied, M.; Eisa, A.: Augmentation of a developed tubular solar still productivity using hybrid storage medium and CPC : an experimental approach. J. Energy Storage 28(December 2019), 101203 (2020). https://doi.org/10.1016/j.est.2020.101203

  34. Essa, F.A.; Alawee, W.H.; Mohammed, S.A.; Dhahad, H.A.; Abdullah, A.S.; Omara, Z.M.: Experimental investigation of convex tubular solar still performance using wick and nanocomposites. Case Stud. Thermal Eng. 27(June), 101368 (2021). https://doi.org/10.1016/j.csite.2021.101368

    Article  Google Scholar 

  35. Elashmawy, M.; Alhadri, M.; Ahmed, M.M.Z.Z.: Enhancing tubular solar still performance using novel PCM-tubes. Desalination, 500(November 2020), 114880 (2021). https://doi.org/10.1016/j.desal.2020.114880

  36. Yeo, S.; Lim, B.; Lee, G.; Park, C.: Experimental study of effects of different heat sources on the performance of the hybrid multiple-effect diffusion solar still. Sol. Energy 193(August), 324–334 (2019). https://doi.org/10.1016/j.solener.2019.09.062

    Article  Google Scholar 

  37. Pounraj, P.; Winston, D.P.; Kabeel, A.E.; Kumar, B.P.; Manokar, A.M.; Sathyamurthy, R.; Christabel, S.C.: Experimental investigation on Peltier based hybrid PV/T active solar still for enhancing the overall performance. Energy Convers. Manage. 168(May), 371–381 (2018). https://doi.org/10.1016/j.enconman.2018.05.011

    Article  Google Scholar 

  38. Praveen, B.; Winston, D.P.; Pounraj, P.; Manokar, A.M.; Sathyamurthy, R.; Kabeel, A.E.: Experimental investigation on hybrid PV/T active solar still with e ff ective heating and cover cooling method. Desalination, 435(August 2017), 140–151 (2018). https://doi.org/10.1016/j.desal.2017.11.007

  39. Manokar, A.M.; Winston, D.P.; Kabeel, A.E.; Sathyamurthy, R.: Sustainable fresh water and power production by integrating PV panel in inclined solar still. J. Clean. Prod. 172, 2711–2719 (2018). https://doi.org/10.1016/j.jclepro.2017.11.140

    Article  Google Scholar 

  40. Shafii, M.B.; Shahmohamadi, M.; Faegh, M.; Sadrhosseini, H.: Examination of a novel solar still equipped with evacuated tube collectors and thermoelectric modules. Desalination 382, 21–27 (2016). https://doi.org/10.1016/j.desal.2015.12.019

    Article  Google Scholar 

  41. Balachandran, G.B.; David, P.W.; Vijayakumar, A.B.P.; Kabeel, A.E.; Athikesavan, M.M.; Sathyamurthy, R.: Enhancement of PV/T-integrated single slope solar desalination still productivity using water film cooling and hybrid composite insulation. Environ. Sci. Pollut. Res. 27(26), 32179–32190 (2020). https://doi.org/10.1007/s11356-019-06131-9

    Article  Google Scholar 

  42. Nazari, S.; Safarzadeh, H.; Bahiraei, M.: Experimental and analytical investigations of productivity, energy and exergy efficiency of a single slope solar still enhanced with thermoelectric channel and nanofluid. Renewable Energy 135, 729–744 (2019). https://doi.org/10.1016/j.renene.2018.12.059

    Article  Google Scholar 

  43. Parsa, S.M.; Rahbar, A.; Koleini, M.H.; Aberoumand, S.; Afrand, M.; Amidpour, M.: A renewable energy-driven thermoelectric-utilized solar still with external condenser loaded by silver/nanofluid for simultaneously water disinfection and desalination. Desalination 480(February), 114354 (2020). https://doi.org/10.1016/j.desal.2020.114354

    Article  Google Scholar 

  44. Sadeghi, G.; Nazari, S.: Retrofitting a thermoelectric-based solar still integrated with an evacuated tube collector utilizing an antibacterial-magnetic hybrid nanofluid. Desalination, 500(October 2020), 114871 (2021). https://doi.org/10.1016/j.desal.2020.114871

  45. Hafs, H.; Asbik, M.; Boushaba, H.; Koukouch, A.; Zaaoumi, A.; Bah, A.; Ansari, O.: Numerical simulation of the performance of passive and active solar still with corrugated absorber surface as heat storage medium for sustainable solar desalination technology. Groundw. Sustain. Dev. 14(May), 100610 (2021). https://doi.org/10.1016/j.gsd.2021.100610

    Article  Google Scholar 

  46. Kabeel, A.E.; Abdelgaied, M.: Observational study of modified solar still coupled with oil serpentine loop from cylindrical parabolic concentrator and phase changing material under basin. Sol. Energy 144, 71–78 (2017). https://doi.org/10.1016/j.solener.2017.01.007

    Article  Google Scholar 

  47. Shehata, A.I.; Kabeel, A.E.; Khairat Dawood, M.M.; Elharidi, A.M.; Abd_Elsalam, A.; Ramzy, K.; Mehanna, A.: Enhancement of the productivity for single solar still with ultrasonic humidifier combined with evacuated solar collector: An experimental study. Energy Convers. Manage. 208(October 2019), 112592 (2020). https://doi.org/10.1016/j.enconman.2020.112592

  48. Bianco, N.; Fragnito, A.; Iasiello, M.; Mauro, G.M.; Mongibello, L.: Multi-objective optimization of a phase change material-based shell-and-tube heat exchanger for cold thermal energy storage: experiments and numerical modeling. Appl. Therm. Eng. 119047 (2022). https://doi.org/10.1016/j.applthermaleng.2022.119047

  49. Inkeri, E.; Tynjälä, T.; Nikku, M.: Numerical modeling of latent heat thermal energy storage integrated with heat pump for domestic hot water production. Appl. Therm. Eng. 214, 118819 (2022). https://doi.org/10.1016/j.applthermaleng.2022.118819

    Article  Google Scholar 

  50. Hidouri, K.; ben Slama, R.; Gabsi, S.: Hybrid solar still by heat pump compression. Desalination, 250(1), 444–449 (2010). https://doi.org/10.1016/j.desal.2009.09.075

  51. Omara, Z.M.; Eltawil, M.A.; ElNashar, E.S.A.: A new hybrid desalination system using wicks/solar still and evacuated solar water heater. Desalination 325, 56–64 (2013). https://doi.org/10.1016/j.desal.2013.06.024

    Article  Google Scholar 

  52. Mamouri, S.J.; Derami, H.G.; Ghiasi, M.; Shafii, M.B.; Shiee, Z.: Experimental investigation of the effect of using thermosyphon heat pipes and vacuum glass on the performance of solar still. Energy 75, 501–507 (2014). https://doi.org/10.1016/j.energy.2014.08.005

    Article  Google Scholar 

  53. Shukla, D.; Modi, K.: Hybrid solar still as a co-generative system and desalination system—an experimental performance evaluation. Cleaner Eng. Technol. 2(October 2020), 100063 (2021). https://doi.org/10.1016/j.clet.2021.100063

  54. Shoeibi, S.; Rahbar, N.; Abedini Esfahlani, A.; Kargarsharifabad, H.: Application of simultaneous thermoelectric cooling and heating to improve the performance of a solar still: an experimental study and exergy analysis. Appl. Energy 263(February), 114581 (2020). https://doi.org/10.1016/j.apenergy.2020.114581

    Article  Google Scholar 

  55. El-Sebaii, A.A.: Effect of wind speed on active and passive solar stills. Energy Convers. Manage. 45(7–8), 1187–1204 (2004). https://doi.org/10.1016/j.enconman.2003.09.036

    Article  Google Scholar 

  56. Murase, K.; Yamagishi, Y.; Iwashita, Y.; Sugino, K.: Development of a tube-type solar still equipped with heat accumulation for irrigation. Energy 33(11), 1711–1718 (2008). https://doi.org/10.1016/j.energy.2008.05.013

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge PETRONAS—Malaysia, for providing financial support under the funded project YUTP—FRG, CS: 015LC0-404. Universiti Teknologi PETRONAS is acknowledged for the technical and logistic support to conduct the research and the production of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hussain H. Al-Kayiem.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Kayiem, H.H., Mohamed, M.M. & Gilani, S.I.U. State of the Art of Hybrid Solar Stills for Desalination. Arab J Sci Eng 48, 5709–5755 (2023). https://doi.org/10.1007/s13369-022-07516-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07516-8

Keywords

Navigation