Skip to main content

Advertisement

Log in

Molecular Simulation of the Occurrence States of Methane in Wedge-Shaped Quartz Pores

  • Research Article-Petroleum Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The adsorption state of methane is significantly influenced by the shape of pores in different matrices. To investigate the occurrence states of methane in heteromorphic quartz pores, three wedge-shaped triangular quartz pores were established, and comparison with the scanning electron microscope photographs of actual shale was conducted. The adsorption states of methane in the wedge-shaped triangular quartz pores at the temperature of 323 K and the pressure of 30 MPa were simulated using the molecular dynamic method. Simulation results show that the adsorption state of methane is distinctly influenced by the wedge angle. At the wedge vertex, the methane density increases as the wedge angle increases. Inside the pores, methane adsorption reaches 2–3 layers near the slit wall surface, and the number of adsorption layers increases as the wedge angle increases. For the first adsorption layer, the larger the wedge angle is, the higher the rate of density decreases is. From the whole model, the effect of wedge angle on the adsorption state of methane decreases with increase in distance from the wedge vertex. The total interaction between methane and quartz and the energy state of each methane molecule determine the state of methane in the pore. The distance from the wedge vertex increases, and the weight of the energy state of each methane molecule gradually increases; however, the total interaction between methane and quartz is still dominant. This study shows that the occurrence states of methane are closely related to the shape of quartz pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yang, F.; Ning, Z.; Liu, H.: Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin. China. Fuel 115, 378–384 (2014). https://doi.org/10.1016/j.fuel.2013.07.040

    Article  Google Scholar 

  2. Gasparik, M.; Ghanizadeh, A.; Bertier, P., et al.: High-Pressure methane sorption isotherms of black shales from the Netherlands. Energy Fuels 26, 4995–5004 (2012). https://doi.org/10.1021/ef300405g

    Article  Google Scholar 

  3. Cheng, X.; Li, Z.G.; He, Y.L.: Release of methane from nanochannels through displacement using CO2. RSC Adv. 11, 15457–15466 (2021). https://doi.org/10.1039/D1RA01795K

    Article  Google Scholar 

  4. Onawole, A.T.; Nasser, M.S.; Hussein, I.A., et al.: Theoretical studies of methane adsorption on Silica-Kaolinite interface for shale reservoir application. Appl. Surf. Sci. 546, 149–164 (2021). https://doi.org/10.1016/j.apsusc.2021.149164

    Article  Google Scholar 

  5. Zhang, J.C.; Jin, Z.J.; Yuan, M.S.: Reservoiring mechanism of shale gas and its distribution. Nat. Gas Ind. 24, 15–18 (2004). https://doi.org/10.3321/j.issn:1000-0976.2004.07.005

    Article  Google Scholar 

  6. Zhang, T.; He, Y.; Yang, Y., et al.: Molecular simulation of shale gas adsorption in organic-matter nanopore. J. Nat. Gas Geo. 2(5–6), 323–332 (2017). https://doi.org/10.1016/j.jnggs.2018.01.001

    Article  Google Scholar 

  7. Cao, T.; Song, Z.; Wang, S., et al.: Characterizing the pore structure in the Silurian and Permian shales of the Sichuan Basin. China. Mar. & Pet. Geo. 61, 140–150 (2015). https://doi.org/10.1016/j.marpetgeo.2014.12.007

    Article  Google Scholar 

  8. Wu, Y.; Fan, T.; Jiang, S., et al.: Methane Adsorption Capacities of the Lower Paleozoic Marine Shales in the Yangtze Platform. South China. Energy Fuels 29(7), 4160–4161 (2015). https://doi.org/10.1021/acs.energyfuels.5b00286

    Article  Google Scholar 

  9. Gafurova, D.; Kalmykov, A.; Korost, D., et al.: Macropores generation in the domanic formation shales: Insights from pyrolysis experiments. Fuel 289(13), 119933 (2021). https://doi.org/10.1016/j.fuel.2020.119933

    Article  Google Scholar 

  10. Aljamaan, H.; Ismail, M.A.; Kovsvek, A.R., et al.: Experimental investigation and Grand Canonical Monte Carlo simulation of gas shale adsorption from the macro to the nano scale. J. Nat. Gas Sci. Eng. 48, 119–137 (2017). https://doi.org/10.1016/j.jngse.2016.12.024

    Article  Google Scholar 

  11. Wang, S.; Feng, Q.H.; Farzam, J., et al.: Competitive adsorption of methane and ethane in montmorillonite nanopores of shale at supercritical conditions: A grand canonical Monte Carlo simulation study. Chem. Eng. J. 335, 76–90 (2019). https://doi.org/10.1016/j.cej.2018.08.067

    Article  Google Scholar 

  12. Curtis, J.B.: Fractured shale-gas systems. AAPG Bull. 86(11), 1921–1938 (2002). https://doi.org/10.1306/61EEDDBE-173E-11D7-8645000102C1865D

    Article  Google Scholar 

  13. Ross, D.J.K.: Shale gas potential of the Lower Jurassic Gordondale Member, northeastern British Columbia, Canada. Bull. Can. Pet. Geo. 55(1), 51–75 (2007). https://doi.org/10.2113/gscpgbull.55.1.51

    Article  Google Scholar 

  14. Ji, L.; Zhang, T.; Milliken, K., et al.: Experimental investigation of main controls to methane adsorption in clay-rich rocks. Appl. Geochem. 27(12), 2533–2545 (2012). https://doi.org/10.1016/j.apgeochem.2012.08.027

    Article  Google Scholar 

  15. Zhang, T.; Ellis, G.; Ruppel, S., et al.: Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems. Org. Geochem. 47(6), 120–131 (2012). https://doi.org/10.1016/j.orggeochem.2012.03.012

    Article  Google Scholar 

  16. Ross, D.; Bustin, R.M.: The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar. Pet. Geol. 26(6), 916–927 (2009). https://doi.org/10.1016/j.marpetgeo.2008.06.004

    Article  Google Scholar 

  17. Li, Y.J.; Li, X.Y.; Wang, Y.L., et al.: Effects of composition and pore structure on the reservoir gas capacity of Carboniferous shale from Qaidam Basin. China. Marine Petroleum Geol. 62, 44–57 (2015). https://doi.org/10.1016/j.marpetgeo.2015.01.011

    Article  Google Scholar 

  18. Xiong, J.; Liu, X.; Liang, L., et al.: Adsorption of methane in organic-rich shale nanopores: An experimental and molecular simulation study. Fuel 200(15), 299–315 (2017). https://doi.org/10.1016/j.fuel.2017.03.083

    Article  Google Scholar 

  19. Bai, Y.Q.; Yang, C.M.; Zhang, Y., et al.: Molecular dynamics simulation of existing state of methane in graphite slit special-shaped holes. J. China Coal Soc. 42(5), 1243–1250 (2017). https://doi.org/10.13225/j.cnki.jccs.2016.0742

    Article  Google Scholar 

  20. Hu, H.; Li, X.; Fang, Z., et al.: Small-molecule gas sorption and diffusion in coal: Molecular simulation. Energy 35(7), 2939–2944 (2010). https://doi.org/10.1016/j.energy.2010.03.028

    Article  Google Scholar 

  21. Chen, G.; Zhang, J.; Lu, S., et al.: Adsorption behavior of hydrocarbon on Illite. Energy Fuels 30(11), 9114–9121 (2016). https://doi.org/10.1021/acs.energyfuels.6b01777

    Article  Google Scholar 

  22. Yang, J.; Wang, M.; Wu, L., et al.: A novel monte carlo simulation on gas flow in fractal shale reservoir. Energy 236, 121–513 (2021). https://doi.org/10.1016/j.energy.2021.121513

    Article  Google Scholar 

  23. Evans, D.; Hoover, W.; Failor, B., et al.: Nonequilibrium molecular dynamics via Gauss’s principle of least constraint. Phys. Rev. A 28(2), 1016–1021 (1983). https://doi.org/10.1103/physreva.28.1016

    Article  Google Scholar 

  24. Bernasconi, M.; Focher, P.; Scandolo, S., et al.: First-principle-constant pressure molecular dynamics. J. Phys. Chem. Solids 56(3–4), 501–505 (1995). https://doi.org/10.1016/0022-3697(94)00228-2

    Article  Google Scholar 

  25. Chen, G.; Lu, S.; Zhang, J., et al.: Keys to linking GCMC simulations and shale gas adsorption experiments. Fuel 199, 14–21 (2017). https://doi.org/10.1016/j.fuel.2017.02.063

    Article  Google Scholar 

  26. Xiong, J.; Liu, X.J.; Liang, L.X.: Adsorption of methane in quartz by Grand Canonical Monte Carlo simulation. Natural Uas Ueoscience 27(8), 1532–1540 (2016). https://doi.org/10.11764/j.issn.1672-1926.2016.08.1532

    Article  Google Scholar 

  27. Shirono, K.; Daiguji, H.: Molecular simulation of the phase behavior of water confined in silica nanopores. J. Phys. Chem. C 111(22), 7938–7946 (2007). https://doi.org/10.1021/jp067380g

    Article  Google Scholar 

  28. Sun, H.Y.; Sun, W.C.; Zhao, H., et al.: Adsorption properties of CH4 and CO2 in quartz nanopores studied by molecular simulation. Rsc Adv. 6, 32770–32778 (2016). https://doi.org/10.1039/c6ra05083b

    Article  Google Scholar 

  29. Liu, Y.; Zhu, Y.: Comparison of pore characteristics in the coal and shale reservoirs of Taiyuan Formation, Qinshui Basin, China. Int. J. Coal Sci. Technol. 3(3), 1–9 (2016). https://doi.org/10.1007/s40789-016-0143-0

    Article  Google Scholar 

  30. Loucks, R.G.; Reed, R.M.; Ruppel, S.C., et al.: Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the mississippian barnett shale. J. Sediment. Res. 79(12), 848–861 (2009). https://doi.org/10.2110/jsr.2009.092

    Article  Google Scholar 

  31. Zhao, N.; Ju, F.; Pan, H., et al.: Molecular dynamics simulation of the interaction of water and humic acid in the adsorption of polycyclic aromatic hydrocarbons. Environ. Sci. Pollut. R. 27(20), 1–12 (2020). https://doi.org/10.1007/s11356-020-09018-2

    Article  Google Scholar 

  32. Perez, F.; Devegowda, D.: A molecular dynamics study of primary production from shale organic pores. SPE J. 25(05), 2521–2533 (2020). https://doi.org/10.2118/201198-PA

    Article  Google Scholar 

  33. Wang, K.; Zhang, B.; Kang, T.: The effect of Mg, Fe(II), and Al doping on CH4 adsorption and diffusion on the surface of Na-Kaolinite 001 by molecular simulations. Molecules 25(4), 1001 (2020). https://doi.org/10.3390/molecules25041001

    Article  Google Scholar 

  34. Sun, H.: COMPASS: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B 102(38), 7338–7364 (1998). https://doi.org/10.1021/jp980939v

    Article  Google Scholar 

  35. Sun, H.; Ren, P.; Fried, J.R.: The COMPASS force field: parameterization and validation for phosphazenes. Comput. Theor. Polym. Sci. 8(1–2), 229–246 (1998). https://doi.org/10.1016/S1089-3156(98)00042-7

    Article  Google Scholar 

  36. Sun, H.; Zhao, H.; Qi, N., et al.: Simulation to enhance shale gas recovery using carbon dioxide in silica nanopores with different sizes. Energ. Technol. 5(11), 1144–1152 (2017). https://doi.org/10.1002/ente.201700166

    Article  Google Scholar 

  37. Ren, Q.; Long, J.; Dai, Z., et al.: Theoretical study on π-π interactions in asphaltene molecular aggregates. Acta Petrolei Sinica 4(35), 751–758 (2019). https://doi.org/10.3969/j.issn.1001-8719.2019.04.017

    Article  Google Scholar 

  38. Xu, Y.; Wang, H.; Wang, Z., et al.: Microscopic mechanism of asphaltene and resin aggregation behavior to the stability of oil-water interface. Northeast Pet Univ. 45(6), 90–101 (2021). https://doi.org/10.3969/j.issn.2095-4107.2021.06.008

    Article  Google Scholar 

  39. Lennard-Jones, J.E.; Dent, B.M.: The Forces between Atoms and Ions. II. Proc. Royal Soc. A 112(760), 230–234 (1926). https://doi.org/10.2307/94629

    Article  Google Scholar 

  40. Waldman, M.; Hagler, A.T.: New combining rules for rare gas van der waals parameters. J. Comput. Chem. 14(9), 1077–1084 (1993). https://doi.org/10.1002/jcc.540140909

    Article  Google Scholar 

  41. Martin, M.G.; Siepmann, J.I.: Transferable potentials for phase equilibria. 1. United-atom description of n-Alkanes. J. Phys. Chem. B 102, 2569–2577 (1998). https://doi.org/10.1021/jp972543+

    Article  Google Scholar 

  42. Hong, L.; Chen, B.D.; Li, Q.J., et al.: Application of P-R equation in calculation of thermophysical properties of natural gas. J. Liaoning Univ. Petrochem. Technol. 28(2), 5 (2008). https://doi.org/10.3969/j.issn.1672-6952.2008.02.013

    Article  Google Scholar 

  43. Andersen, H.C.: Molecular dynamics simulations at constant pressure and temperature. J. Chem. Phys. 72(4), 2384–2393 (1980). https://doi.org/10.1063/1.439486

    Article  Google Scholar 

  44. Jin, Z.; Firoozabadi, A.: Effect of water on methane and carbon dioxide sorption in clay minerals by Monte Carlo simulations. Fluid Phase Equilib. 382, 10–20 (2014). https://doi.org/10.1016/j.fluid.2014.07.035

    Article  Google Scholar 

  45. Xiong, J.; Liu, K.; Liu, X., et al.: Molecular simulation of methane adsorption in slit-like quartz pores. Rsc Adv. 6, 110808–110819 (2016). https://doi.org/10.1039/C6RA22803H

    Article  Google Scholar 

  46. Hu, C.; Zhang, Y.L.; Wang, X., et al.: Stable, strain-sensitivity conductive hydrogel with anti-freezing capable, remoldability and reusability. ACS Appl. Mater. Inter. 10(50), 44000–44010 (2018). https://doi.org/10.1021/acsami.8b15287

    Article  Google Scholar 

  47. Zhao, Z.; Li, Z.; Zou, Z.: Structure and properties of water on the anatase TiO2101 surface: from single-molecule adsorption to interface formation. J. Phys. Chem. C 116(20), 11054–11061 (2016). https://doi.org/10.1021/jp301468c

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Heilongjiang Province of China (Grant No. LH2019D006), and the authors are grateful for this support. The authors also thank all editors and anonymous reviewers for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqiang Bai.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author(s).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Bai, Y., Zhang, Y. et al. Molecular Simulation of the Occurrence States of Methane in Wedge-Shaped Quartz Pores. Arab J Sci Eng 48, 9299–9309 (2023). https://doi.org/10.1007/s13369-022-07353-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07353-9

Keywords

Navigation