Skip to main content

Advertisement

Log in

Application of Nano SiO2 in Pervious Concrete Pavement Using Waste Bricks as Coarse Aggregate

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The use of waste bricks in pavement construction has gained an immense attraction to researchers because it not only minimizes the scarcity of regular construction materials but also helps in minimizing the waste disposal problems. However, it is sometimes required to add some additives in the mix for improving its strength characteristics, and hence researchers have tried using several additives in concrete/pervious concrete mixes, but the application of nano SiO2 in pervious concrete is a new concept. The prime focus of this study is to check the suitability of using over burnt bricks in the pervious concrete pavement using nano-silica (nano SiO2) as an additive. The laboratory test results show that the addition of nano SiO2 in PC has significantly improved its strength parameters but showed a negative impact on its pore properties. The compressive strength, split tensile strength and flexural strength can be increased by more than 50%, 30% and 55%, respectively, while the porosity and permeability are reduced by around 20% and 45%. Finally, the test results are also validated with the results obtained by other researchers, and it is observed that the PC mixes made with waste over burnt brick aggregates can provide similar results as obtained by using stone aggregates. Although the present study does not incorporate any long-term behaviour of PC, however, from this overall study, it is found that the waste bricks can easily be utilized as a replacement of stone aggregates in the pervious concrete pavement by using nano SiO2 as an additive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Tayebi, M.; Nematzadeh, M.: Post-fire flexural performance and microstructure of steel fiber-reinforced concrete with recycled nylon granules and zeolite substitution. Structures. 33, 2301–2316 (2021). https://doi.org/10.1016/j.istruc.2021.05.080

    Article  Google Scholar 

  2. Bahrami, A.; Nematzadeh, M.: Bond behavior of lightweight concrete-filled steel tubes containing rock wool waste after exposure to high temperatures. Constr. Build. Mater. 300, 124039 (2021). https://doi.org/10.1016/j.conbuildmat.2021.124039

    Article  Google Scholar 

  3. Fakoor, M.; Nematzadeh, M.: Evaluation of post-fire pull-out behavior of steel rebars in high-strength concrete containing waste PET and steel fibers : Experimental and theoretical study. Constr. Build. Mater. 299, 123917 (2021). https://doi.org/10.1016/j.conbuildmat.2021.123917

    Article  Google Scholar 

  4. Fallah-valukolaee, S.; Nematzadeh, M.: Experimental study for determining applicable models of compressive stress – strain behavior of hybrid synthetic fiber-reinforced high-strength concrete. Eur. J. Environ. Civ. Eng. 8189, 1–25 (2017). https://doi.org/10.1080/19648189.2017.1364297

    Article  Google Scholar 

  5. Zhang, G.; Wang, S.; Wang, B.; Zhao, Y.; Kang, M.; Wang, P.: Properties of pervious concrete with steel slag as aggregates and different mineral admixtures as binders. Constr. Build. Mater. 257, 119543 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119543

    Article  Google Scholar 

  6. Toghroli, A., Shariati, M., Karim, M.R., Ibrahim, Z.: Investigation on composite polymer and silica fume–rubber aggregate pervious concrete. In: Proceedings of the 5th International Conference on Advances in Civil, Structural and Mechanical Engineering-CSM (2017)

  7. Shariati, M., Heyrati, A., Zandi, Y., Laka, H., Toghroli, A., Kianmehr, P., Salih, M., Poi-Ngian, S.: Application of waste tire rubber aggregate in porous concrete. Smart Struct. Syst. 24, 553–566 (2019). https://doi.org/10.12989/SSS.2019.24.4.553

  8. Shariati, M., Mafipour, M.S., Mehrabi, P., Ahmadi, M., Wakil, K., Trung, N.T., Toghroli, A.: Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm). Smart Struct. Syst. 25, 183–195 (2020). https://doi.org/10.12989/SSS.2020.25.2.183

  9. Hamidian, M.; Shariati, M.; Arabnejad, M.M.K.; Sinaei, H.: Assessment of high strength and light weight aggregate concrete properties using ultrasonic pulse velocity technique. Int. J. Phys. Sci. 6, 5261–5266 (2011). https://doi.org/10.5897/IJPS11.1081

    Article  Google Scholar 

  10. Li, D., Toghroli, A., Shariati, M., Sajedi, F., Bui, D.T., Kianmehr, P., Mohamad, E.T., Khorami, M.: Application of polymer, silica-fume and crushed rubber in the production of Pervious concrete. Smart Struct. Syst. 23, 207–214 (2019). https://doi.org/10.12989/sss.2019.23.2.207

  11. Toghroli, A.; Mehrabi, P.; Shariati, M.; Trung, N.T.; Jahandari, S.; Rasekh, H.: Evaluating the use of recycled concrete aggregate and pozzolanic additives in fiber-reinforced pervious concrete with industrial and recycled fibers. Constr. Build. Mater. 252, 118997 (2020). https://doi.org/10.1016/j.conbuildmat.2020.118997

    Article  Google Scholar 

  12. Mazumder, A.R.; Kabir, A.; Yazdani, N.: Performance of overburnt distorted bricks as aggregates in pavement works. J. Mater. Civ. Eng. 18, 777–785 (2006). https://doi.org/10.1061/(ASCE)0899-1561(2006)18:6(777)

    Article  Google Scholar 

  13. Debnath, B.; Pratim Sarkar, P.: Quantification of random pore features of porous concrete mixes prepared with brick aggregate: An application of stereology and mathematical morphology. Constr. Build. Mater. 294, 123594 (2021). https://doi.org/10.1016/j.conbuildmat.2021.123594

    Article  Google Scholar 

  14. Mahdi, N., Ardalan, B.-N.: Effect of pozzolans on mechanical behavior of recycled refractory brick concrete in fire. Struct. Eng. Mech. 72, 339–354 (2019). https://doi.org/10.12989/sem.2019.72.3.339

  15. Mahdi, N., Ardalan, B.-N.: Mechanical performance of fiber-reinforced recycled refractory brick concrete exposed to elevated temperatures. Comput. Concr. 24, 19–35 (2019). https://doi.org/10.12989/cac.2019.24.1.019

  16. Sarkar, D., Pal, M., Sarkar, A.K., Mishra, U.: Evaluation of the Properties of Bituminous Concrete Prepared from Brick-Stone Mix Aggregate. Adv. Mater. Sci. Eng. 2016, (2016). https://doi.org/10.1155/2016/2761038

  17. Apebo, N.S.; Agunwamba, J.C.; Ezeokonkwo, J.C.: The suitability of crushed over burnt bricks as coarse aggregates for concrete. Int. J. Eng. Sci. Innov. Technol. 3, 315–321 (2014)

    Google Scholar 

  18. Otoko, G.R.: Use Of Crushed Bricks As Coarse Aggregate In Concrete. Tikrit J. Eng. Sci. 16, 64–70 (2014)

    Google Scholar 

  19. Rasel, H.M.; Sobhan, M.A.; Rahman, M.N.: Performance evaluation of brick chips as coarse aggregate. SAMRIDDHI-A J. Phys. Sci. Eng. Technol. 2, 37–46 (2011)

    Google Scholar 

  20. Tennis, P.D., Leming, M.L., Akers, D.J.: Pervious concrete pavement. , Silver Spring, Maryland, USA (2004)

  21. Ghafari, E.; Costa, H.; Júlio, E.; Portugal, A.; Durães, L.: The effect of nanosilica addition on flowability, strength and transport properties of ultra high performance concrete. Mater. Des. 59, 1–9 (2014). https://doi.org/10.1016/j.matdes.2014.02.051

    Article  Google Scholar 

  22. Haselbach, L.M.: Potential for clay clogging of pervious concrete under extreme conditions. J. Hydrol. Eng. 15, 67–69 (2010). https://doi.org/10.1061/(ASCE)HE.1943-5584.0000154

    Article  Google Scholar 

  23. ACI-522R: Report on Pervious Concrete. ACI Comm. 522, Am. Concr. Inst. 1–42 (2010)

  24. Zhong, R.; Xu, M.; Vieira Netto, R.; Wille, K.: Influence of pore tortuosity on hydraulic conductivity of pervious concrete: Characterization and modeling. Constr. Build. Mater. 125, 1158–1168 (2016). https://doi.org/10.1016/j.conbuildmat.2016.08.060

    Article  Google Scholar 

  25. Debnath, B.; Sarkar, P.P.: Pervious concrete as an alternative pavement strategy: a state-of-the-art review. Int. J. Pavement Eng. (2018). https://doi.org/10.1080/10298436.2018.1554217

    Article  Google Scholar 

  26. Shariati, M., Ramli-Sulong, N.H., Mohammad Mehdi Arabnejad, K.H., Shafigh, P., Sinaei, H.: Assessing the strength of reinforced Concrete Structures Through Ultrasonic Pulse Velocity And Schmidt Rebound Hammer tests. Sci. Res. Essays. 6, 213–220 (2011). https://doi.org/10.5897/SRE10.879

  27. Shariati, M., Ramli Sulong, N., Suhatril, M., Shariati, A., Arabnejad Khanouki, M., Sinaei, H.: Fatigue energy dissipation and failure analysis of channel shear connector embedded in the lightweight aggregate concrete in composite bridge girders. In: Proceedings of the 5th international conference on engineering failure analysis. pp. 1–4 (2012)

  28. Shariati, M., Ramli Sulong, N. H., Arabnejad Khanouki, M. M., & Shariati, A.: Experimental and numerical investigations of channel shear connectors in high strength concrete. In: Proceedings of the 2011 world congress on advances in structural engineering and mechanics (ASEM’11+) (2011)

  29. Shariati, M., Ramli Sulong, N.H., Arabnejad, M.M.K.H., Mahoutian, M.: Shear resistance of channel shear connectors in plain, reinforced and lightweight concrete. Sci. Res. Essays. 6, 977–983 (2011). https://doi.org/10.5897/SRE10.1120

  30. Dai, Z.; Li, H.; Zhao, W.; Wang, X.; Wang, H.; Zhou, H.; Yang, B.: Multi-modified effects of varying admixtures on the mechanical properties of pervious concrete based on optimum design of gradation and cement-aggregate ratio. Constr. Build. Mater. 233, 117178 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117178

    Article  Google Scholar 

  31. Nguyen, D.H.; Sebaibi, N.; Boutouil, M.; Leleyter, L.; Baraud, F.: A modified method for the design of pervious concrete mix. Constr. Build. Mater. 73, 271–282 (2014). https://doi.org/10.1016/j.conbuildmat.2014.09.088

    Article  Google Scholar 

  32. Zachariah, J.P., Sarkar, P.P., Debnath, B., Pal, M.: Effect of polypropylene fibres on bituminous concrete with brick as aggregate. Constr. Build. Mater. 168, (2018). https://doi.org/10.1016/j.conbuildmat.2018.02.016

  33. Debnath, B.; Sarkar, P.P.: Clogging in Pervious Concrete Pavement Made with Non-conventional Aggregates: Performance Evaluation and Rehabilitation Technique. Arab. J. Sci. Eng. (2021). https://doi.org/10.1007/s13369-021-05380-6

    Article  Google Scholar 

  34. Toghroli, A., Shariati, M., Sajedi, F., Ibrahim, Z., Koting, S., Mohamad, E.T., Khorami, M.: A review on pavement porous concrete using recycled waste materials. Smart Struct. Syst. 22, 433–440 (2018). https://doi.org/10.12989/sss.2018.22.4.433

  35. Trung, N.T., Alemi, N., Haido, J.H., Shariati, M., Baradaran, S., Yousif, S.T.: Reduction of cement consumption by producing smart green concretes with natural zeolites. Smart Struct. Syst. 24, 415–425 (2019). https://doi.org/10.12989/sss.2019.24.3.415

  36. Shariati, M., Armaghani, D.J., Khandelwal, M., Zhou, J., Khorami, M.: Assessment of Longstanding Effects of Fly Ash and Silica Fume on the Compressive Strength of Concrete Using Extreme Learning Machine and Artificial Neural Network. J. Adv. Eng. Comput. 5, 50 (2021). https://doi.org/10.25073/jaec.202151.308

  37. Shariati, M., Mafipour, M.S., Haido, J.H., Yousif, S.T., Toghroli, A., Trung, N.T., Shariati, A.: Identification of the most influencing parameters on the properties of corroded concrete beams using an Adaptive Neuro-Fuzzy Inference System (ANFIS). Steel Compos. Struct. 34, 155–170 (2020). https://doi.org/10.12989/scs.2020.34.1.155

  38. Shariati, M.; Mafipour, M.S.; Ghahremani, B.; Azarhomayun, F.; Ahmadi, M.; Trung, N.T.; Shariati, A.: A novel hybrid extreme learning machine–grey wolf optimizer (ELM-GWO) model to predict compressive strength of concrete with partial replacements for cement. Eng. Comput. (2020). https://doi.org/10.1007/s00366-020-01081-0

    Article  Google Scholar 

  39. Gupta, S.: Application of Silica Fume and Nanosilica in Cement and Concrete – A Review. J. Today’s Ideas - Tomorrow’s Technol. 1, 85–98 (2013). https://doi.org/10.15415/jotitt.2013.12006

  40. Mehrabi, P.; Shariati, M.; Kabirifar, K.; Jarrah, M.; Rasekh, H.; Trung, N.T.; Shariati, A.; Jahandari, S.: Effect of pumice powder and nano-clay on the strength and permeability of fiber-reinforced pervious concrete incorporating recycled concrete aggregate. Constr. Build. Mater. 287, 122652 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122652

    Article  Google Scholar 

  41. Mohammed, B.S.; Liew, M.S.; Alaloul, W.S.; Khed, V.C.; Hoong, C.Y.; Adamu, M.: Properties of nano-silica modified pervious concrete. Case Stud. Constr. Mater. 8, 409–422 (2018). https://doi.org/10.1016/j.cscm.2018.03.009

    Article  Google Scholar 

  42. Nili, M.; Ehsani, A.: Investigating the effect of the cement paste and transition zone on strength development of concrete containing nanosilica and silica fume. Mater. Des. 75, 174–183 (2015). https://doi.org/10.1016/j.matdes.2015.03.024

    Article  Google Scholar 

  43. Norhasri, M.S.M.; Hamidah, M.S.; Fadzil, A.M.: Applications of using nano material in concrete: A review. Constr. Build. Mater. 133, 91–97 (2017). https://doi.org/10.1016/j.conbuildmat.2016.12.005

    Article  Google Scholar 

  44. Said, A.M.; Zeidan, M.S.; Bassuoni, M.T.; Tian, Y.: Properties of concrete incorporating nano-silica. Constr. Build. Mater. 36, 838–844 (2012). https://doi.org/10.1016/j.conbuildmat.2012.06.044

    Article  Google Scholar 

  45. Du, H.; Du, S.; Liu, X.: Durability performances of concrete with nano-silica. Constr. Build. Mater. 73, 705–712 (2014). https://doi.org/10.1016/j.conbuildmat.2014.10.014

    Article  Google Scholar 

  46. Quercia, G.; Lazaro, A.; Geus, J.W.; Brouwers, H.J.H.: Characterization of morphology and texture of several amorphous nano-silica particles used in concrete. Cem. Concr. Compos. 44, 77–92 (2013). https://doi.org/10.1016/j.cemconcomp.2013.05.006

    Article  Google Scholar 

  47. Jalal, M.; Pouladkhan, A.; Harandi, O.F.; Jafari, D.: Comparative study on effects of Class F fly ash, nano silica and silica fume on properties of high performance self compacting concrete. Constr. Build. Mater. 94, 90–104 (2015). https://doi.org/10.1016/j.conbuildmat.2015.07.001

    Article  Google Scholar 

  48. IS 2386- Part I: Method of test for aggregate for concrete. Part I - Particle size and shape. Bur. Indian Stand. New Delhi, India. (Reaffirmed 2002) (1963)

  49. IS 2386- Part III: Method of Test for aggregate for concrete. Part III- Specific gravity, density, voids, absorption and bulking. Bur. Indian Stand. New Delhi. (Reaffirmed 2002) (1963)

  50. IS 2386 - Part IV: Methods of test for Aggregates for Concrete, part 4 : Mechanical properties [CED 2: Cement and Concrete]. Bur. Indian Stand. New Delhi. 1–37 (2002)

  51. IS 383: Specification for Coarse and Fine Aggregates From Natural Sources for Concrete. Bur. Indian Stand. Delhi. 1–24 (1970)

  52. Debnath, B.; Sarkar, P.P.: Characterization of pervious concrete using over burnt brick as coarse aggregate. Constr. Build. Mater. 242, 118154 (2020). https://doi.org/10.1016/j.conbuildmat.2020.118154

    Article  Google Scholar 

  53. IS:10262: Indian Standard Guidelines for concrete mix design proportioning. Bur. Indian Stand. New Delhi. 1–21 (2009)

  54. Chandrappa, A.K.; Biligiri, K.P.: Methodology to develop pervious concrete mixtures for target properties emphasizing the selection of mixture variables. J. Transp. Eng. Part B Pavements. 144, 1–10 (2018). https://doi.org/10.1061/JPEODX.0000061

    Article  Google Scholar 

  55. IS:516: Method of Tests for Strength of Concrete. Bur. Indian Stand. 516 - 1959 ( Reaffirmed 2004 ). New Delhi,India (2004). https://doi.org/10.3403/02128947

  56. IS:5816: Indian Standard Splitting tensile strength of concrete- method of test. Bur. Indian Stand. New Delhi. 5816, 1–14 (1999)

  57. Chandrappa, A.K.; Biligiri, K.P.: Flexural-fatigue characteristics of pervious concrete: Statistical distributions and model development. Constr. Build. Mater. 153, 1–15 (2017). https://doi.org/10.1016/j.conbuildmat.2017.07.081

    Article  Google Scholar 

  58. ASTM: C 1754 - 12 Standard Test Method for Density and Void Content of Hardened Pervious Concrete. Astm C1754/C1754M-12. 3 (2012). https://doi.org/10.1520/C1754

  59. Debnath, B., Sarkar, P.P.: Permeability prediction and pore structure feature of pervious concrete using brick as aggregate. Constr. Build. Mater. 213, (2019). https://doi.org/10.1016/j.conbuildmat.2019.04.099

  60. Beigi, M.H.; Berenjian, J.; Lotfi Omran, O.; Sadeghi Nik, A.; Nikbin, I.M.: An experimental survey on combined effects of fibers and nanosilica on the mechanical, rheological, and durability properties of self-compacting concrete. Mater. Des. 50, 1019–1029 (2013). https://doi.org/10.1016/j.matdes.2013.03.046

    Article  Google Scholar 

  61. Singh, L.P.; Karade, S.R.; Bhattacharyya, S.K.; Yousuf, M.M.; Ahalawat, S.: Beneficial role of nanosilica in cement based materials - A review. Constr. Build. Mater. 47, 1069–1077 (2013). https://doi.org/10.1016/j.conbuildmat.2013.05.052

    Article  Google Scholar 

  62. Applications of using nano material in concrete: Bastami, M., Baghbadrani, M., Aslani, F., Du, H., Du, S., Liu, X., Ghafari, E., Costa, H., Júlio, E., Portugal, A., Durães, L., Jalal, M., Pouladkhan, A., Harandi, O.F., Jafari, D., Mondal, P., Shah, S.P., Marks, L.D., Gaitero, J.J., Mukharjee, B.B., Barai, S. V., Gupta, S., Nili, M., Ehsani, A., Shabani, K., Anumeena, S.U., Karthiyaini, S., M. Collepardi, S. Collepardi, U.S. and R.T., Brouwers, H.J.H.J.H.H., Quercia, G., Supit, S.W.M., Shaikh, F.U.A., Nili, M., Ehsani, A., Norhasri, M.S.M., Hamidah, M.S., Fadzil, A.M., Quercia, G., Lazaro, A., Geus, J.W., Brouwers, H.J.H.J.H.H. A review. Constr. Build. Mater. 59, 67–73 (2014). https://doi.org/10.1016/j.cemconcomp.2013.05.006

    Article  Google Scholar 

  63. Jo, B., Kim, C., Tae, G., Park, J.: Characteristics of cement mortar with nano-SiO 2 particles. 21, 1351–1355 (2007). https://doi.org/10.1016/j.conbuildmat.2005.12.020

  64. Ferraris, C.F.; Obla, K.H.; Hill, R.: The influence of mineral admixtures on the rheology of cement paste and concrete. 31, 245–255 (2001)

    Google Scholar 

  65. Prokopski, G.; Halbiniak, J.: Interfacial transition zone in cementitious materials. 30, 1–5 (2000)

    Google Scholar 

  66. Lian, C.; Zhuge, Y.: Optimum mix design of enhanced permeable concrete - An experimental investigation. Constr. Build. Mater. 24, 2664–2671 (2010). https://doi.org/10.1016/j.conbuildmat.2010.04.057

    Article  Google Scholar 

  67. ACI-318: Building Code Requirements for Structural Concrete ( ACI 318–11 ). (2011)

  68. Xiao, J.; Li, J.; Zhang, C.: Mechanical properties of recycled aggregate concrete under uniaxial loading. 35, 1187–1194 (2005). https://doi.org/10.1016/j.cemconres.2004.09.020

    Article  Google Scholar 

  69. Kou, S., Poon, C.: Mechanical properties of 5-year-old concrete prepared with recycled aggregates obtained from three different sources. 9831, 57–64 (2008). https://doi.org/10.1680/macr.2007.00052

  70. Ibrahim, A.; Mahmoud, E.; Yamin, M.; Patibandla, V.C.: Experimental study on Portland cement pervious concrete mechanical and hydrological properties. Constr. Build. Mater. 50, 524–529 (2014). https://doi.org/10.1016/j.conbuildmat.2013.09.022

    Article  Google Scholar 

  71. Ibrahim, H.A.; Goh, Y.; Ng, Z.A.; Yap, S.P.; Mo, K.H.; Yuen, C.W.; Abutaha, F.: Hydraulic and strength characteristics of pervious concrete containing a high volume of construction and demolition waste as aggregates. Constr. Build. Mater. 253, 119251 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119251

    Article  Google Scholar 

  72. Hesami, S.; Ahmadi, S.; Nematzadeh, M.: Effects of rice husk ash and fiber on mechanical properties of pervious concrete pavement. Constr. Build. Mater. 53, 680–691 (2014). https://doi.org/10.1016/j.conbuildmat.2013.11.070

    Article  Google Scholar 

  73. Sata, V.; Wongsa, A.; Chindaprasirt, P.: Properties of pervious geopolymer concrete using recycled aggregates. Constr. Build. Mater. 42, 33–39 (2013). https://doi.org/10.1016/j.conbuildmat.2012.12.046

    Article  Google Scholar 

  74. Gaedicke, C.; Torres, A.; Huynh, K.C.T.; Marines, A.: A method to correlate splitting tensile strength and compressive strength of pervious concrete cylinders and cores. Constr. Build. Mater. 125, 271–278 (2016). https://doi.org/10.1016/j.conbuildmat.2016.08.031

    Article  Google Scholar 

  75. IS 456: Concrete, Plain and Reinforced. Bur. Indian Stand. Dehli. 1–114 (2000)

  76. Joshaghani, A.; Ramezanianpour, A.A.; Ataei, O.; Golroo, A.: Optimizing pervious concrete pavement mixture design by using the Taguchi method. Constr. Build. Mater. 101, 317–325 (2015). https://doi.org/10.1016/j.conbuildmat.2015.10.094

    Article  Google Scholar 

  77. National Ready Mix Concrete Association (NRMCA): Text reference for pervious concrete contractor certification. (2007)

  78. Kuang, X.; Sansalone, J.; Ying, G.; Ranieri, V.: Pore-structure models of hydraulic conductivity for permeable pavement. J. Hydrol. 399, 148–157 (2011). https://doi.org/10.1016/j.jhydrol.2010.11.024

    Article  Google Scholar 

  79. Chandrappa, A.K.; Biligiri, K.P.: Comprehensive investigation of permeability characteristics of pervious concrete: A hydrodynamic approach. Constr. Build. Mater. 123, 627–637 (2016). https://doi.org/10.1016/j.conbuildmat.2016.07.035

    Article  Google Scholar 

  80. Berryman, J.G.; Blair, S.C.: Kozeny-Carman relations and image processing methods for estimating Darcy’s constant. J. Appl. Phys. 62, 2221–2228 (1987). https://doi.org/10.1063/1.339497

    Article  Google Scholar 

  81. Regalado, C.M.; Muñoz-Carpena, R.: Estimating the saturated hydraulic conductivity in a spatially variable soil with different permeameters: A stochastic Kozeny-Carman relation. Soil Tillage Res. 77, 189–202 (2004). https://doi.org/10.1016/j.still.2003.12.008

    Article  Google Scholar 

  82. Ji, T.: Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2. Cem. Concr. Res. 35, 1943–1947 (2005). https://doi.org/10.1016/j.cemconres.2005.07.004

    Article  Google Scholar 

  83. Yu, R.; Spiesz, P.; Brouwers, H.J.H.: Effect of nano-silica on the hydration and microstructure development of Ultra-High Performance Concrete (UHPC) with a low binder amount. Constr. Build. Mater. 65, 140–150 (2014). https://doi.org/10.1016/j.conbuildmat.2014.04.063

    Article  Google Scholar 

  84. Kong, D.; Du, X.; Wei, S.; Zhang, H.; Yang, Y.; Shah, S.P.: Influence of nano-silica agglomeration on microstructure and properties of the hardened cement-based materials. Constr. Build. Mater. 37, 707–715 (2012). https://doi.org/10.1016/j.conbuildmat.2012.08.006

    Article  Google Scholar 

  85. Zhang, M.H.; Li, H.: Pore structure and chloride permeability of concrete containing nano-particles for pavement. Constr. Build. Mater. 25, 608–616 (2011). https://doi.org/10.1016/j.conbuildmat.2010.07.032

    Article  Google Scholar 

  86. Zhong, R.; Wille, K.: Compression response of normal and high strength pervious concrete. Constr. Build. Mater. 109, 177–187 (2016). https://doi.org/10.1016/j.conbuildmat.2016.01.051

    Article  Google Scholar 

  87. Elizondo-Martínez, E.J.; Andrés-Valeri, V.C.; Juli-Gándara, L.; Rodriguez-Hernandez, J.: Multi-criteria optimum mixture design of porous concrete pavement surface layers. Int. J. Pavement Eng. (2020). https://doi.org/10.1080/10298436.2020.1768254

    Article  Google Scholar 

  88. Grubeša, I.N.; Barišić, I.; Ducman, V.; Korat, L.: Draining capability of single-sized pervious concrete. Constr. Build. Mater. 169, 252–260 (2018). https://doi.org/10.1016/j.conbuildmat.2018.03.037

    Article  Google Scholar 

  89. Cui, X.; Zhang, J.; Huang, D.; Liu, Z.; Hou, F.; Cui, S.; Zhang, L.; Wang, Z.: Experimental study on the relationship between permeability and strength of pervious concrete. J. Mater. Civ. Eng. 29, 1–9 (2017). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002058

    Article  Google Scholar 

  90. Huang, B.; Wu, H.; Shu, X.; Burdette, E.G.: Laboratory evaluation of permeability and strength of polymer-modified pervious concrete. Constr. Build. Mater. 24, 818–823 (2010). https://doi.org/10.1016/j.conbuildmat.2009.10.025

    Article  Google Scholar 

  91. Aliabdo, A.A., Abd Elmoaty, A.E.M., Fawzy, A.M.: Experimental investigation on permeability indices and strength of modified pervious concrete with recycled concrete aggregate. Constr. Build. Mater. 193, 105–127 (2018). https://doi.org/10.1016/j.conbuildmat.2018.10.182

  92. Akand, L.; Yang, M.; Wang, X.: Effectiveness of chemical treatment on polypropylene fibers as reinforcement in pervious concrete. Constr. Build. Mater. 163, 32–39 (2018). https://doi.org/10.1016/j.conbuildmat.2017.12.068

    Article  Google Scholar 

  93. Debnath, B., Sarkar, P.P.: Prediction and model development for fatigue performance of pervious concrete made with over burnt brick aggregate. Mater. Struct. 7, (2020). https://doi.org/10.1617/s11527-020-01523-7

Download references

Acknowledgements

The authors express their gratitude towards the ‘Central Research Facility’ of National Institute of Technology Agartala for XRD test and the ‘Central Instrumentation Center’ of Tripura University for SEM test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barnali Debnath.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debnath, B., Sarkar, P.P. Application of Nano SiO2 in Pervious Concrete Pavement Using Waste Bricks as Coarse Aggregate. Arab J Sci Eng 47, 12649–12669 (2022). https://doi.org/10.1007/s13369-022-06594-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06594-y

Keywords

Navigation