Skip to main content
Log in

Feasibility Study of the SPIF Process Applied to Perforated Sheet Metals

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Single point incremental forming (SPIF) of sheet metal is a process that is widely used for rapid prototyping and small series production. The process is known for its flexibility, performance, and ease of use in forming custom parts with complex geometries. However, SPIF seems to present many challenges, especially its use in the biomedical sector, where control of operating parameters and compliance with component dimensions are production qualification requirements. This includes springback, which particularly affects the dimensional and geometric compliance of the formed part to the programmed one. This paper describes the results obtained from a design of experiment (DOE) related to the forming process of perforated plates produced by the SPIF process applied to AZ31B Magnesium alloy. The comparative analysis between the responses of obtained parts without holes and obtained ones from perforated plates showed discrepancies between the collected responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

SPIF:

Single point incremental sheet forming

DOE:

Design of experiment

AZ31B:

Magnesium alloy

\({\mu }_{i}\) :

Friction indicator

\({F}_{z}\) :

Axial forming force for perforated sheet

\({F}_{f}\) :

Passive resistance to the feed of the forming tool

\({F}_{\mathrm{form}}\) :

Force resisting the sheet deformation of

\({F}_{X}, {F}_{Y}\) :

Forming force in (X, Y) plane

\({T}_{zt}\) :

Total measured torque

\({T}_{zc}\) :

Cinematic measured torque

\({S}_{sc}\) :

Step screw CNC machine

\({F}_{Z0}\) :

Unperforated sheet vertical force

\({F}_{Zt}\) :

Total vertical force

\({F}_{ZC}\) :

Cinematic vertical force

\({F}_{Z \mathrm{sensor}}\) :

Vertical sensor force

\({F}_{Z \mathrm{CNC}}\) :

Vertical CNC machine force

\({F}_{Za}\) :

Adjusted vertical force

\(\lambda \) :

Adjusted coefficient force

\({F}_{z\mathrm{exp}}\) :

Experimental vertical forming force

\({F}_{z\mathrm{pred}}\) :

Predictive vertical forming force

\({K}_{\mathrm{Sp}}, K\) :

Perforated sheet springback

\({K}_{\mathrm{Sp}0}, {K}_{0}\) :

Unperforated sheet springback

\({K}_{\mathrm{C}}\) :

Programed path offset

\(\mathrm{NI}\) :

National Instrument

\({G}_{\mathrm{Fz}}\left(\%\right)\) :

Relative gap between perforated and unperforated forces

\({G}_{\mathrm{sp}}(\%)\) :

Relative gap between perforated and unperforated springback

\({K}_{\mathrm{W}}\) :

Wall angle offset

\({K}_{\mathrm{exp}}\) :

Experimental springback

\({K}_{\mathrm{pred}}\) :

Predictive springback

\({Z}_{\mathrm{CAD}}\) :

Vertical depth of CAD model

\({Z}_{0}\) :

Vertical depth of unperforated sheet

\(Z\) :

Vertical depth of perforated sheet

\({D}_{T}\) :

Tool diameter

\(\Delta Z\) :

Vertical step down

\(S\) :

Spindle speed

\({D}_{\mathrm{h}}\) :

Hole diameter

\({H}_{\mathrm{g}}\) :

Hole grid

\(\mathrm{DOF}\) :

Degree of freedom

\(F\text{-value}\) :

Fisher test value

\(P\,\mathrm{ value}\) :

Value of significance

\(C\boldsymbol{\%}\) :

Percentage of contribution

\(\mathrm{SS}\) :

Sum of Squared deviations

\(\mathrm{MS}\) :

Mean squares

\({R}^{2}\) :

Determination coefficient

\({R}_{\mathrm{ad}}^{2}\) :

Adjusted determination coefficient

\({\delta }_{\mathrm{F}}\left(\boldsymbol{\%}\right)\) :

Relative gap between predicted and experimental forces

\({\delta }_{\mathrm{K}}\left(\boldsymbol{\%}\right)\) :

Relative gap between predicted and experimental springback

References

  1. Mohanty, S.; Regalla, S.P.; Daseswara Rao, Y.V.: Robot-assisted incremental sheet metal forming under the different forming condition. J. Braz. Soc. Mech. Sci. Eng. 41(74), (2019). https://doi.org/10.1007/s40430-019-1581-6

  2. Lu, B.; Fang, Y.; Xu, D.K.; Chen, J.; Ou, H.; Moser, N.H.; Cao, J.: Mechanism investigation of friction-related effects in single point incremental forming using a developed oblique roller-ball tool. Int. J. Mach. Tools Manuf. 85, 14−29 (2014). https://doi.org/10.1016/j.ijmachtools.2014.04.007

    Article  Google Scholar 

  3. Afonso, D.; Torcato, R.; de Sousa, R.J.A.: Integration of design rules and process modelling within SPIF technology—a review on the industrial dissemination of single point incremental forming. Int. J. Adv. Manuf. Technol. 94, 4387–4399 (2018). https://doi.org/10.1007/s00170-017-1130-3

    Article  Google Scholar 

  4. Boulila, A.; Ayadi, M.; Marzouki, S.; Bouzidi, S.: Contribution to biomedical component production by incremental sheet forming. Int. J. Adv. Manuf. Technol. 95, 2821–2833 (2018). https://doi.org/10.1007/s00170-017-1397-4

    Article  Google Scholar 

  5. Dakhli, M.; Boulila, A.; Manach, P.-Y.; Tourki, Z.: Optimization of processing parameters and surface roughness of metallic sheets plastically deformed by incremental forming process. Int. J. Adv. Manuf. Technol. 102, 977–990 (2019). https://doi.org/10.1007/s00170-018-03265-x

    Article  Google Scholar 

  6. Kumar, A.; Gulati, V.; Kumar, P.; Singh, H.: Forming force in incremental sheet forming: a comparative analysis of the state of the art. J. Braz. Soc. Mech. Sci. Eng. 41, 251 (2019). https://doi.org/10.1007/s40430-019-1755-2

    Article  Google Scholar 

  7. Barimani-Varandi, A.; Kazemi Nasrabadi, M.; Abedi Ravan, B.; Javadi, M.: Rapid prototyping of aircraft canopy based on the incremental forming process. J. Braz. Soc. Mech. Sci. Eng. 43, 59 (2021). https://doi.org/10.1007/s40430-021-02811-1

  8. Dakhli, M.; Boulila, A.; Tourki, Z.: Effect of generatrix profile on single-point incremental forming parameters. Int. J. Adv. Manuf. Techno. 93, 2505–2516 (2017). https://doi.org/10.1007/s00170-017-0598-1

    Article  Google Scholar 

  9. Behera, A.; Lauwers, B.; Duflou, J.: Tool path generation for single point incremental forming using intelligent sequencing and multi-step mesh morphing techniques. Int. J. Mater. Form. 8, 517–532 (2015). https://doi.org/10.1007/s12289-014-1174-y

    Article  Google Scholar 

  10. Bosetti, P.; Bruschi, S.: Springback evaluation of parts made by single-point incremental sheet forming. international mechanical engineering congress and exposition. IMECE 2011-64817, pp. 925–932 (8 pp). https://doi.org/10.1115/IMECE2011-64817

  11. Edwards, W.L.; Grimm, T.J.; Ragai, I.; Roth, J.T.: Optimum process parameters for springback reduction of single point incrementally formed polycarbonate. Proc. Manuf. 10, 329–338 (2017). https://doi.org/10.1016/j.promfg.2017.07.002

    Article  Google Scholar 

  12. Lu, B.; Ou, H.; Shi, S.Q.; Long, H.; Chen, J.: Titanium based cranial reconstruction using incremental sheet forming. Int. J. Mater. Form. 9, 361–370 (2016). https://doi.org/10.1007/s12289-014-1205-8

    Article  Google Scholar 

  13. Fiorentino, A.; Marzi, R.; Ceretti, E.: Preliminary results on Ti incremental sheet forming (ISF) of biomedical devices: biocompatibility, surface finishing and treatment. Int. J. Mechatron. Manuf. 5(1), 36–45 (2012). https://doi.org/10.1504/IJMMS.2012.046146

    Article  Google Scholar 

  14. Mitsuishi, M.; Cao, J.; Bártolo, P.; Friedrich, D.; Shih, A.; Rajurkar, K.; Sugita, N.; Harada, K.: Biomanufacturing. CIRP Ann. Manuf. Technol. 62(2), 585–606 (2013). https://doi.org/10.1016/j.cirp.2013.05.001

    Article  Google Scholar 

  15. Gulati, M.; Anand, V.; Salaria, S.K.; Jain, N.; Gupta, S.: Computerized implant-dentistry: advances toward automation. J. Indian. Soc. Periodontol. 19(1), 5–10 (2015). https://doi.org/10.4103/0972-124X.145781

    Article  Google Scholar 

  16. Zhong, F.Q.; Indurkar, P.P.; Quan, C.G.: Three-dimensional digital image correlation with improved efficiency and accuracy. Measurement 128, 23–33 (2018). https://doi.org/10.1016/j.measurement.2018.06.022

    Article  Google Scholar 

  17. Rakesh, L.; Amit, S.; Reddy, N.V.: Deflection compensations for tool path to enhance accuracy during double-sided incremental forming. J. Manuf. Sci. Eng. 138(9), 091008 (2016). https://doi.org/10.1115/1.4033956

    Article  Google Scholar 

  18. Timoshenko, S.: Theory of Plates and Shells, 2nd edn. McGraw-Hill, New York (1964)

  19. Azaouzi, M.; Nadhir, L.: Tool path optimization for single point incremental sheet forming using response surface method. Simulat. Model. Pract. Theor. 24, 49–58 (2012). https://doi.org/10.1016/j.simpat.2012.01.008

    Article  Google Scholar 

  20. Fang, Y.; Lu, B.; Chen, J.; Xu, D.; Ou, H.: Analytical and experimental investigations on deformation mechanism and fracture behavior in single point incremental forming. J. Mater. Process. Technol. 214(8), 1503–1515 (2014). https://doi.org/10.1016/j.jmatprotec.2014.02.019

    Article  Google Scholar 

  21. Al-Ghamdi, K.; Hussain, G.: Threshold tool-radius condition maximizing the formability in SPIF considering a variety of materials: Experimental and FE investigations. Int. J. Mach. Tools Manuf. 88, 82–94 (2015). https://doi.org/10.1016/j.ijmachtools.2014.09.005

    Article  Google Scholar 

  22. Raju, C.; Narayanan, C.S.: Application of a hybrid optimization technique in a multiple sheet single point incremental forming process. Measurement 78, 296–308 (2016). https://doi.org/10.1016/j.measurement.2015.10.025

    Article  Google Scholar 

  23. Najm, S.M.; Paniti, I.: Artificial neural network for modeling and investigating the effects of forming tool characteristics on the accuracy and formability of thin aluminum alloy blanks when using SPIF. Int. J. Adv. Manuf. Techno. 114, 2591–2615 (2021). https://doi.org/10.1007/s00170-021-06712-4

    Article  Google Scholar 

  24. Milutinović, M.; Lendjel, R.; Baloš, S.; Zlatanović, D.L.; Sevšek, L.; Pepelnjak, T.: Characterisation of geometrical and physical properties of a stainless steel denture framework manufactured by single-point incremental forming. J. Mater. Res. Technol. 10, 605–623 (2021). https://doi.org/10.1016/j.jmrt.2020.12.014

    Article  Google Scholar 

  25. Cheng, Z.; Li, Y.; Xu, C.; Liu, Y.; Ghafoor, S.; Li, F.: Incremental sheet forming towards biomedical implants: a review. J. Mater. Res. Technol. 9(4), 7225–7251 (2020). https://doi.org/10.1016/j.jmrt.2020.04.096

    Article  Google Scholar 

  26. Duflou, J.; Lauwers, B.; Verbert, J.; Gelaude, F.; Tunckol, Y.: Medical application of single point incremental forming: cranial plate manufacturing. In: Proceedings of the 2nd International Conference on Advanced Research in Virtual and Rapid Prototyping, London, pp. 161–166 (2005)

  27. Oleksik, V.; Pascu, A.; Deac, C.; Fleaca, R.; Roman, M.; Bologa, O.: The influence of geometrical parameters on the incremental forming process for knee implants analyzed by numerical simulation. AIP Conf. Proc. 1252, 1208 (2010). https://doi.org/10.1063/1.3457520

    Article  Google Scholar 

  28. Basak, S.; Sajun Prasad, K.; Mehto, A.; Bagchi, J.; Shiva Ganesh, Y.; Mohanty, S.; Sidpara, A.M.; Panda, S.K.: Parameter optimization and texture evolution in single point incremental sheet forming process. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 234(1–2), 126–139 (2019). https://doi.org/10.1177/0954405419846001

    Article  Google Scholar 

  29. Murugesan, M.; Jung, D.W.: Formability and Failure Evaluation of AA3003-H18 sheets in single-point incremental forming process through the design of experiments. Materials 14(4), 808 (2021). https://doi.org/10.3390/ma14040808

    Article  Google Scholar 

  30. Duflou, J.R.; Habraken, A.-M.; Cao, J.; Malhotra, R.; Bambach, M.; Adams, D.; Vanhove, H.; Mohammad, A.; Jeswiet, J.: Single point incremental forming: state-of-the-art and prospects. Int. J. Mater. Form. 11, 743–773 (2018). https://doi.org/10.1007/s12289-017-1387-y

    Article  Google Scholar 

  31. Poukens, J.; Laeven, P.; Beerens, M.; Nijenhuis, G.; Sloten, J.V.; Stoelinga, P.; Kessler, P.: A classification of cranial implants based on the degree of difficulty in computer design and manufacture. Int. J. Med. Robot. Comput. Assist. Surg. 4(1), 46–50 (2008). https://doi.org/10.1002/rcs.171

    Article  Google Scholar 

  32. Nout, E.; Mommaerts, M.Y.: Considerations in computer-aided design for inlay cranioplasty: technical note. Oral. Maxillofac. Surg. 22, 65–69 (2018). https://doi.org/10.1007/s10006-017-0668-4

    Article  Google Scholar 

  33. Sharma, N.; Aghlmandi, S.; Dalcanale, F.; Seiler, D.; Zeilhofer, H.-F.; Honigmann, P.; Thieringer, F.M.: Quantitative assessment of point-of-care 3D-printed patient-specific polyetheretherketone (PEEK) cranial implants. Int. J. Mol. Sci. 22(16), 8521 (2021). https://doi.org/10.3390/ijms22168521

  34. Ambrogio, G.; Palumbo, G.; Sgambitterra, E.; Guglielmi, P.; Piccininni, A.; De Napoli, L.; Villa, T.; Fragomeni, G.: Experimental investigation of the mechanical performances of titanium cranial prostheses manufactured by super plastic forming and single-point incremental forming. Int. J. Adv. Manuf. Technol. 98, 1489–1503 (2018). https://doi.org/10.1007/s00170-018-2338-6

    Article  Google Scholar 

  35. Moiduddin, K.; Mian, S.H.; Umer, U.; Alkhalefah, H.: Fabrication and analysis of a Ti6Al4V implant for cranial restoration. Appl. Sci. 9(12), 2513 (2019). https://doi.org/10.3390/app9122513

    Article  Google Scholar 

  36. Honarpisheh, M.; Abdolhoseini, J.; Amini, S.: Experimental and numerical investigation of the hot incremental forming of Ti-6Al-4V sheet using electrical current. Int. J. Adv. Manuf. Technol. 83, 2027–2037 (2016). https://doi.org/10.1007/s00170-015-7717-7

    Article  Google Scholar 

  37. Mohammadi, A.; Vanhove, H.; Bael, A.V.; Duflou, J.R.: Towards accuracy improvement in single point incremental forming of shallow parts formed under laser assisted conditions. Int. J. Mater. Form. 9, 339–351 (2016). https://doi.org/10.1007/s12289-014-1203-x

    Article  Google Scholar 

  38. Saidi, B.; Giraud-Moreau, L.; Mhemed, S.; Cherouat, A.; Adragna, P.-A.; Nasri, R.: Hot incremental forming of titanium human skull prosthesis by using cartridge heaters: a reverse engineering approach. J. Adv. Manuf. Technol. 101, 873–880 (2019). https://doi.org/10.1007/s00170-018-2975-9

    Article  Google Scholar 

  39. Moosbrugger, C.; Marquard, L.: Engineering Properties of Magnesium Alloys, p. 184. ASM International, Materials Park, OH, USA (2017)

  40. Tan, J.; Ramakrishna, S.: Applications of magnesium and its alloys: a review. Appl. Sci. 11(15), 6861 (2021). https://doi.org/10.3390/app11156861

    Article  Google Scholar 

  41. Cusanno, A.; Negrini, N.C.; Villa, T.; Farè, S.; Garcia-Romeu, M.L.; Palumbo, G.: Post forming analysis and in vitro biological characterization of AZ31B Processed By Incremental Forming and coated 2021ospun polycaprolactone. J. Manuf. Sci. Eng. 143(1), 011012 (2021). https://doi.org/10.1115/1.4048741

    Article  Google Scholar 

  42. Yamada, R.; Yoshihara, S.; Ito, Y.: Fatigue properties of AZ31B magnesium alloy processed by equal-channel angular pressing. Metals 11(8), 1191 (2021). https://doi.org/10.3390/met11081191

    Article  Google Scholar 

  43. Liao, J.; Zeng, X.; Xue, X.: Surface quality analysis of AZ31B Mg alloy sheet in ultrasonic-assisted warm single-point incremental forming. Int. J. Adv. Manuf. Technol. (2021). https://doi.org/10.1007/s00170-021-08045-8

    Article  Google Scholar 

  44. Campanella, D.; Buffa, G.; Lo Valvo, E.; Fratini, L.: A numerical approach for the modelling of forming limits in hot incremental forming of AZ31 magnesium alloy. Int. J. Adv. Manuf. Technol. 114, 3229–3239 (2021). https://doi.org/10.1007/s00170-021-07059-6

    Article  Google Scholar 

  45. Jai Poinern, G.E.; Brundavanam, S.; Fawcett, D.: Biomedical magnesium alloys: a review of material properties, surface modifications and potential as a biodegradable orthopaedic implant. Am. J. Biomed. Eng. 2(6), 218–240 (2012). https://doi.org/10.5923/j.ajbe.20120206.02

    Article  Google Scholar 

  46. Brandão, J.A.; Meheux, M.; Ville, F.; Seabra, J.H.; Castro, J.: Comparative overview of five gear oils in mixed and boundary film lubrication. Tribol. Int. 47, 50–61 (2012). https://doi.org/10.1016/j.triboint.2011.10.007

    Article  Google Scholar 

  47. Zavala, J.M.D.; Martínez-Romero, O.; Elías-Zúñiga, A.; Gutiérrez, H.M.L.; Estrada-de la Vega, A.; Taha-Tijerina, J.: Study of friction and wear effects in aluminum parts manufactured via single point incremental forming process using petroleum and vegetable oil-based lubricants. Materials 14(14), 3973 (2021). https://doi.org/10.3390/ma14143973

    Article  Google Scholar 

  48. Kumar, Y.; Kumar, S.: Experimental and analytical evaluation of incremental sheet hydro-forming strategies to produce high forming angle sheets. Heliyon 5(6), e01801 (2019). https://doi.org/10.1016/j.heliyon.2019.e01801

    Article  Google Scholar 

  49. Liu, X.; Zhao, S.; Qin, Y.; Zhao, J.; Wan-Nawang, W.-A.: A parametric study on the bending accuracy in micro W-bending using Taguchi method. Measurement 100, 233–242 (2017). https://doi.org/10.1016/j.measurement.2016.12.007

    Article  Google Scholar 

  50. Taherkhani, A.; Nariman-Zadeh, N.; Jamali, A.: Achieving maximum dimensional accuracy and surface quality at the shortest possible time in single-point incremental forming via multi-objective optimization. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 233(3), 900–913 (2019). https://doi.org/10.1177/0954405418755822

    Article  Google Scholar 

  51. Seçgin, Ö.: Effect of operational parameters on incremental forming of low-alloy sheet metals and its optimisation. Adv. Mater. Process. Technol. 84, 71–84 (2020). https://doi.org/10.1080/2374068X.2020.1753449

    Article  Google Scholar 

  52. Saidi, B.; Boulila, A.; Ayadi, M.; Nasri, R.: Experimental force measurements in single point incremental sheet forming SPIF. Mech. Indus. 16(4), 410 (2015). https://doi.org/10.1051/meca/2015018

    Article  Google Scholar 

  53. Kilani, L.; Mabrouki, T.; Ayadi, M.; Chermiti, H.; Belhadi, S.: Effects of rolling ball tool parameters on roughness, sheet thinning, and forming force generated during SPIF process. Int. J. Adv. Manuf. Technol. 106, 4123–4142 (2020). https://doi.org/10.1007/s00170-019-04918-1

    Article  Google Scholar 

  54. Trzepieciński, T.; Oleksik, V.; Pepelnjak, T.; Mohammed Najm, S.; Paniti, I.; Maji, K.: Emerging trends in single point incremental sheet forming of lightweight metals. Metals 11(8), 1188 (2021). https://doi.org/10.3390/met11081188

    Article  Google Scholar 

  55. EN50081-1.: Electromagnetic compatibility—generic emission standard—part 1: residential, commercial and light industry. EN 50081-1:1994, European standard (1994)

  56. EN50082-1.: Electromagnetic compatibility—generic immunity standard—residential, commercial and light industry. EN 50082-1:1998, in European Standard (1998)

  57. EN61010-1.: Safety requirements for electrical equipment for measurement, control, and laboratory use—part 1: general requirements. EN61010-1:2010, European Standard (2010)

  58. Gandla, P.K.; Kurra, S.; Prasad, K.S.; Panda, S.K.; Singh, S.K.: Effect of pre-cut hole diameter on deformation mechanics in multi-stage incremental hole fanging of deep drawing quality steel. Archiv. Civ. Mech. Eng. 21, 16 (2021). https://doi.org/10.1007/s43452-020-00156-5

    Article  Google Scholar 

  59. Bagudanch, I.; Centeno, G.; Vallellano, C.; Garcia-Romeu, M.L.: Forming force in single point incremental forming under different bending conditions. Proc. Eng. 63, 354–360 (2013). https://doi.org/10.1016/j.proeng.2013.08.207

    Article  Google Scholar 

  60. Kumar, A.; Gulati, V.: Experimental investigations and optimization of forming force in incremental sheet forming. Sadhana 43, 159 (2018). https://doi.org/10.1007/s12046-018-0926-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atef Boulila.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouzidi, S., Ayadi, M. & Boulila, A. Feasibility Study of the SPIF Process Applied to Perforated Sheet Metals. Arab J Sci Eng 47, 9225–9252 (2022). https://doi.org/10.1007/s13369-022-06570-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06570-6

Keywords

Navigation