Skip to main content
Log in

Synergistic Effect of Imidazoline Derivative and Benzimidazole as Corrosion Inhibitors for Q235 Steel: An Electrochemical, XPS, FT-IR and MD Study

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The corrosion inhibition effect and synergistic mechanism of novel imidazoline derivative (SMIF) and benzimidazole (BMZ) in 3.5 wt% simulated concrete solution were studied experimentally and theoretically. The complex inhibitors have the most outstanding inhibition efficiency when SMIF concentration is 0.1 g/L and BMZ is 0.9 g/L, the corrosion inhibition efficiencies of weight loss, Electrochemical Impedance Spectroscopy and Potentiodynamic polarization curve (Tafel) were 88.81%, 86.27% and 90.22%, respectively. Electrochemistry analysis results proved that the corrosion inhibition mechanism of the inhibitors in the corrosion solution was mainly the formation of a protective film on the surface of carbon steel. FT-IR, Energy Dispersive Spectroscopy and X-ray Photoelectron Spectroscopy all proved the existence of the protective film. Molecular dynamics proved that the composite inhibitor molecules could be stable on the surface of carbon steel and when consist of complex inhibitor was 0.1 g/L SMIF and 0.9 g/L BMZ the stable adsorption morphology were the highest. This work confirmed that SMIF and BMZ inhibitors have a good synergistic effect, greatly improving the inhibition efficiency and reducing the cost of corrosion inhibition, and has a certain guiding significance for synergistic inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8
Fig. 9
Fig. 10
Fig.11

Similar content being viewed by others

References

  1. Wu, M.; Ma, H.; Shi, J.: Enhanced corrosion resistance of reinforcing steels in simulated concrete pore solution with low molybdate to chloride ratios. Cement Concr. Compos. 110, 103589 (2020)

    Article  Google Scholar 

  2. Zhao, Y.; Pan, T.; Yu, X., et al.: Corrosion inhibition efficiency of triethanolammonium dodecylbenzene sulfonate on Q235 carbon steel in simulated concrete pore solution. Corros. Sci. 158, 108097 (2019)

    Article  Google Scholar 

  3. Liu, Q.; Song, Z.; Han, H., et al.: A novel green reinforcement corrosion inhibitor extracted from waste Platanus acerifolia leaves. Constr. Build. Mater. 260, 119695 (2020)

    Article  Google Scholar 

  4. Wang, H.; Zhang, A.; Zhang, L., et al.: Study on the influence of compound rust inhibitor on corrosion of steel bars in chloride concrete by electrical parameters. Constr. Build. Mater. 262, 120763 (2020)

    Article  Google Scholar 

  5. Chen, Y.; Jiang, L.; Yan, X., et al.: Impact of phosphate corrosion inhibitors on chloride binding and release in cement pastes. Constr. Build. Mater. 236, 117469 (2020)

    Article  Google Scholar 

  6. Nahali, H.; Ben Mansour, H.; Dhouibi, L., et al.: Effect of Na3PO4 inhibitor on chloride diffusion in mortar. Constr. Build. Mater. 141, 589–597 (2017)

    Article  Google Scholar 

  7. Zhi, F.; Jiang, L.; Jin, M., et al.: Inhibition effect and mechanism of polyacrylamide for steel corrosion in simulated concrete pore solution. Constr. Build. Mater. 259, 120425 (2020)

    Article  Google Scholar 

  8. Zhu, Y.; Sun, Q.; Wang, Y., et al.: Molecular dynamic simulation and experimental investigation on the synergistic mechanism and synergistic effect of oleic acid imidazoline and l-cysteine corrosion inhibitors. Corros. Sci. 185, 109414 (2021)

    Article  Google Scholar 

  9. Zhang, W.; Nie, B.; Li, H.-J., et al.: Inhibition of mild steel corrosion in 1 M HCl by chondroitin sulfate and its synergistic effect with sodium alginate. Carbohydr. Polymers 260, 117842 (2021)

    Article  Google Scholar 

  10. Zhu, H.; Li, X.; Lu, X., et al.: Intra-/inter-molecular synergistic inhibition effect of sulfonate surfactant and 2-benzothiazolethiol on carbon steel corrosion in 3.5% NaCl solution. Corros. Sci. 182, 109291 (2021)

    Article  Google Scholar 

  11. Xiong, L.; Wang, P.; He, Z., et al.: Corrosion behaviors of Q235 carbon steel under imidazoline derivatives as corrosion inhibitors: Experimental and computational investigations. Arab. J. Chem. 14(2), 102952 (2021)

    Article  Google Scholar 

  12. Zhang, Z.; Ba, H.; Wu, Z.: Sustainable corrosion inhibitor for steel in simulated concrete pore solution by maize gluten meal extract: electrochemical and adsorption behavior studies. Constr. Build. Mater. 227, 117080 (2019)

    Article  Google Scholar 

  13. Santos, A.M.; Aquino, I.P.; Cotting, F., et al.: Evaluation of palm kernel cake powder (Elaeis guineensis Jacq.) as corrosion inhibitor for carbon steel in acidic media. Metals Mater. Int. 27(6), 1519–1530 (2020)

    Article  Google Scholar 

  14. Qiang, Y.; Zhang, S.; Wang, L.: Understanding the adsorption and anticorrosive mechanism of DNA inhibitor for copper in sulfuric acid. Appl. Surf. Sci. 492, 228–238 (2019)

    Article  Google Scholar 

  15. Qiang, Y.; Guo, L.; Li, H., et al.: Fabrication of environmentally friendly Losartan potassium film for corrosion inhibition of mild steel in HCl medium. Chem. Eng. J. 406, 126863 (2021)

    Article  Google Scholar 

  16. Qiang, Y.; Zhang, S.; Zhao, H., et al.: Enhanced anticorrosion performance of copper by novel N-doped carbon dots. Corros. Sci. 161, 108193 (2019)

    Article  Google Scholar 

  17. Espinoza Vázquez, A.; Figueroa, I.A.; Gómez, F.J.R., et al.: (–) – Epicatechin gallate as a corrosion inhibitor for bronze in a saline medium and theoretical study. J. Molecul. Struct. 1227, 129416 (2021)

    Article  Google Scholar 

  18. Wu, Y.; Guo, L.; Tan, B., et al.: 5-Mercapto-1-phenyltetrazole as a high-efficiency corrosion inhibitor for Q235 steel in acidic environment. J. Molecul. Liq. 325, 115132 (2021)

    Article  Google Scholar 

  19. He, J.; Yu, D.; Xu, Q., et al.: Combining experimental and theoretical researches to insight into the anti-corrosion property of Morinda citrifolia Linn leaves extracts. J. Molecul. Liq. 325, 115145 (2021)

    Article  Google Scholar 

  20. Satpati, S.; Suhasaria, A.; Ghosal, S., et al.: Amino acid and cinnamaldehyde conjugated Schiff bases as proficient corrosion inhibitors for mild steel in 1 M HCl at higher temperature and prolonged exposure: Detailed electrochemical, adsorption and theoretical study. J. Mol. Liq. 324, 115077 (2021)

    Article  Google Scholar 

  21. Bouoidina, A.; Ech-Chihbi, E.; El-Hajjaji, F., et al.: Anisole derivatives as sustainable-green inhibitors for mild steel corrosion in 1 M HCl: DFT and molecular dynamic simulations approach. J. Mol. Liq. 324, 115088 (2021)

    Article  Google Scholar 

  22. Tabatabaei Majd, M.; Bahlakeh, G.; Dehghani, A., et al.: Combined molecular simulation, DFT computation and electrochemical studies of the mild steel corrosion protection against NaCl solution using aqueous Eucalyptus leaves extract molecules linked with zinc ions. J. Mol. Liq. 294, 111550 (2019)

    Article  Google Scholar 

  23. Verma, C.; Singh, P.; Bahadur, I., et al.: Electrochemical, thermodynamic, surface and theoretical investigation of 2-aminobenzene-1,3-dicarbonitriles as green corrosion inhibitor for aluminum in 0.5M NaOH. J. Mol. Liq. 209, 767–778 (2015)

    Article  Google Scholar 

  24. El-Tabei, A.S.; Hegazy, M.A.; Bedair, A.H., et al.: Synthesis and Inhibition Effect of a Novel Tri-cationic Surfactant on Carbon Steel Corrosion in 05 M H2SO4 Solution. J. Surfact. Deterg. 17(2), 341–352 (2014)

    Article  Google Scholar 

  25. Tan, B.; Zhang, S.; Liu, H., et al.: Corrosion inhibition of X65 steel in sulfuric acid by two food flavorants 2-isobutylthiazole and 1-(1,3-Thiazol-2-yl) ethanone as the green environmental corrosion inhibitors: Combination of experimental and theoretical researches. J. Colloid Interface Sci. 538, 519–529 (2019)

    Article  Google Scholar 

  26. Attou, A.; Tourabi, M.; Benikdes, A., et al.: Experimental studies and computational exploration on the 2-amino-5-(2-methoxyphenyl)-1,3,4-thiadiazole as novel corrosion inhibitor for mild steel in acidic environment. Colloids Surf. A Physicochem. Eng. Aspects 604, 125320 (2020)

    Article  Google Scholar 

  27. Tan, B.; Zhang, S.; Li, W., et al.: Experimental and theoretical studies on inhibition performance of Cu corrosion in 0.5 M H2SO4 by three disulfide derivatives. J. Industr. Eng. Chem. 77, 449–460 (2019)

    Article  Google Scholar 

  28. Wang, D.; Li, Y.; Chen, B., et al.: Novel surfactants as green corrosion inhibitors for mild steel in 15% HCl: Experimental and theoretical studies. Chem. Eng. J. 402, 126219 (2020)

    Article  Google Scholar 

  29. Chauhan, D.S.; Quraishi, M.A.; Jafar Mazumder, M.A., et al.: Design and synthesis of a novel corrosion inhibitor embedded with quaternary ammonium, amide and amine motifs for protection of carbon steel in 1 M HCl. J. Mol. Liq. 317, 113917 (2020)

    Article  Google Scholar 

  30. Shaban, S.M.; Elsamad, S.A.; Tawfik, S.M., et al.: Studying surface and thermodynamic behavior of a new multi-hydroxyl Gemini cationic surfactant and investigating their performance as corrosion inhibitor and biocide. J. Mol. Liq. 316, 113881 (2020)

    Article  Google Scholar 

  31. Alrebh, A.; Rammal, M.B.; Omanovic, S.: A pyridine derivative 2-(2-Methylaminoethyl)pyridine (MAEP) as a ‘green’ corrosion inhibitor for low-carbon steel in hydrochloric acid media. J. Mol. Struct. 1238, 130333 (2021)

    Article  Google Scholar 

  32. Yadav, D.K.; Quraishi, M.A.: Electrochemical investigation of Substituted Pyranopyrazoles Adsorption on Mild Steel in Acid Solution. Ind. Eng. Chem. Res. 51(24), 8194–8210 (2012)

    Article  Google Scholar 

  33. Singh, A.; Ansari, K.R.; Quraishi, M.A., et al.: Theoretically and experimentally exploring the corrosion inhibition of N80 steel by pyrazol derivatives in simulated acidizing environment. J. Mol. Struct. 1206, 127685 (2020)

    Article  Google Scholar 

  34. Murthy, R.; Gupta, P.; Sundaresan, C.N.: Theoretical and electrochemical evaluation of 2-thioureidobenzheteroazoles as potent corrosion inhibitors for mild steel in 2 M HCl solution. J. Mo.l Liq. 319, 114081 (2020)

    Article  Google Scholar 

  35. Nwankwo, H.U.; Akpan, E.D.; Olasunkanmi, L.O., et al.: N-substituted carbazoles as corrosion inhibitors in microbiologically influenced and acidic corrosion of mild steel: gravimetric, electrochemical, surface and computational studies. J. Mol. Struct. 1223, 129328 (2021)

    Article  Google Scholar 

  36. Farimani, A.M.; Hassannejad, H.; Nouri, A., et al.: Using oral penicillin as a novel environmentally friendly corrosion inhibitor for low carbon steel in an environment containing hydrogen sulfide corrosive gas. J. Nat. Gas Sci. Eng. 77, 103262 (2020)

    Article  Google Scholar 

  37. Motamedi, M.; Ghodrati, S.; Abdi, A.A., et al.: Experimental/computational assessments of steel in HCl medium containing pyrimidine as a green corrosion inhibitor. J. Mol. Liq. 321, 114902 (2021)

    Article  Google Scholar 

  38. Tiwari, N.; Mitra, R.K.; Yadav, M.: Corrosion protection of petroleum oil well/tubing steel using thiadiazolines as efficient corrosion inhibitor: Experimental and theoretical investigation. Surf. Interfaces 22, 100770 (2021)

    Article  Google Scholar 

  39. Solomon, M.M.; Umoren, S.A.; Quraishi, M.A., et al.: Myristic acid based imidazoline derivative as effective corrosion inhibitor for steel in 15% HCl medium. J. Colloid Interface Sci. 551, 47–60 (2019)

    Article  Google Scholar 

  40. Berisha, A.: Experimental, monte carlo and molecular dynamic study on corrosion inhibition of mild steel by pyridine derivatives in aqueous perchloric acid (2020)

  41. Bellal, Y.; Benghanem, F.; Keraghel, S.: A new corrosion inhibitor for steel rebar in concrete: Synthesis, electrochemical and theoretical studies. J. Mol. Struct. 1225, 129257 (2021)

    Article  Google Scholar 

  42. Ahmed, R.K.; Zhang, S.: Bee pollen extract as an eco-friendly corrosion inhibitor for pure copper in hydrochloric acid. J. Mol. Liq. 316, 113849 (2020)

    Article  Google Scholar 

  43. Sun, X.; Zhang, S.; Liu, M., et al.: Experimental validation and molecular dynamics simulation of removal of PO residue on Co surface by alkaline cleaning solution with different functional groups. Colloids Surf. A Physicochem. Eng. Aspects 610, 125932 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by the National Natural Science Foundation of China (51965020); Jiangxi Science Foundation of China (20202BAB204020, 20202BABL204045); Nanchang Science and Technology Plan Projects Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liping Xiong or Zhongyi He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Xiong, L., He, Z. et al. Synergistic Effect of Imidazoline Derivative and Benzimidazole as Corrosion Inhibitors for Q235 Steel: An Electrochemical, XPS, FT-IR and MD Study. Arab J Sci Eng 47, 7123–7134 (2022). https://doi.org/10.1007/s13369-021-06540-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06540-4

Keywords

Navigation