Skip to main content
Log in

Insight into the Synergic Effect of Ultrasonic Waves, SDS Surfactant, and Silica Nanoparticles on Wettability Alteration of Carbonate Rocks

  • Research Article-Petroleum Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The impact of ultrasonic radiation, as an emerging enhanced oil recovery technique, on reservoir fluid properties is of great importance in petroleum engineering. Although the effect of sonication on fluid properties has been widely investigated, the wettability alteration of carbonate rocks via different solutions under ultrasonic radiation has not been considered. In this study, the synergic impact of ultrasonic radiation on the wettability alteration of carbonate rocks was studied by using distilled water, seawater, SDS surfactant, silica nanoparticles, and SDS surfactant–silica nanoparticles solutions. Variance analysis showed that all parameters under ultrasonic radiation, including types of water, surfactant solution, nanoparticles, sonication time, and temperature, were meaningful and had influences on the wettability alteration. The contact angle decreased notably by raising the temperature and sonication time. Ultrasonic waves improved the elimination of chemisorbed fatty acids on the surface, and this could be one of the mechanisms of wettability alteration by the ultrasonic application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ahmadi, M.A.; Shadizadeh, S.R.: Experimental investigation of adsorption of a new nonionic surfactant on carbonate minerals. Fuel 104, 462–467 (2013)

    Article  Google Scholar 

  2. Wu, Y.; Shuler, P. J.; Blanco, M.; Tang, Y.; Goddard, W. A.: An experimental study of wetting behavior and surfactant EOR in carbonates with model compounds. (2008).

  3. Gupta, R.; Mohanty, K.: Temperature effects on surfactant-aided imbibition into fractured carbonates. SPE J. 15, 588–597 (2010)

    Article  Google Scholar 

  4. Hosseini, H.; Apourvari, S.N.; Schaffie, M.: Wettability alteration of carbonate rocks via magnetic fields application. J. Petrol. Sci. Eng. 172, 280–287 (2019)

    Article  Google Scholar 

  5. Jadhunandan, P.; Morrow, N.: Spontaneous imbibition of water by crude oil/brine/rock systems. In Situ;(United States). 15, (1991).

  6. Morrow, N.R.; Mason, G.: Recovery of oil by spontaneous imbibition. Curr. Opin. Colloid Interface Sci. 6, 321–337 (2001)

    Article  Google Scholar 

  7. Zhou, X.; Morrow, N.R.; Ma, S.: Interrelationship of wettability, initial water saturation, aging time, and oil recovery by spontaneous imbibition and waterflooding. SPE J. 5, 199–207 (2000)

    Article  Google Scholar 

  8. Telmadarreie, A.; Trivedi, J.: Evaluation of foam generated with the hydrocarbon solvent for extra-heavy oil recovery from fractured porous media: Pore-scale visualization. J. Petrol. Sci. Eng. 157, 1170–1178 (2017)

    Article  Google Scholar 

  9. Hosseini, H.; Hosseini, H.; Jalili, M.; Norouzi Apourvari, S.; Schaffie, M.; Ranjbar, M.: Static adsorption and interfacial tension of Sodium dodecyl sulfate via magnetic field application. J. Petrol. Sci. Eng. 178, 205–215 (2019)

    Article  Google Scholar 

  10. Zhang, Z.; Azad, M. S.; Trivedi, J. J.: Ultra low IFT or wettability alteration: What is more important for tight carbonate recovery. SPE Western Regional Meeting. Bakersfield, California, USA: Society of Petroleum Engineers. 15 (2020).

  11. Ayirala, S.C.; Vijapurapu, C.S.; Rao, D.N.: Beneficial effects of wettability altering surfactants in oil-wet fractured reservoirs. J. Petrol. Sci. Eng. 52, 261–274 (2006)

    Article  Google Scholar 

  12. Golabi, E.; Seyedeyn Azad, F.; Ayatollahi, S.; Hosseini, N.; Akhlaghi, N.: Experimental study of wettability alteration of limestone rock from oil wet to water wet by applying various surfactants. SPE Heavy Oil Conference Canada. Calgary, Alberta, Canada: Society of Petroleum Engineers. (2012).

  13. Gupta, R.; Mohanty, K.K.: Wettability alteration mechanism for oil recovery from fractured carbonate rocks. Transp. Porous Media 87, 635–652 (2011)

    Article  Google Scholar 

  14. Standnes, D.C.; Austad, T.: Wettability alteration in chalk: 2. Mechanism for wettability alteration from oil-wet to water-wet using surfactants. J. Petrol. Sci. Eng. 28, 123–143 (2000)

  15. Supee, A.; Idris, A.K.: Effects of surfactant-polymer formulation and salinities variation towards oil recovery. Arab. J. Sci. Eng. 39, 4251–4260 (2014)

    Article  Google Scholar 

  16. Hirasaki, G.; Zhang, D. L.: Surface chemistry of oil recovery from fractured, oil-wet, carbonate formations. (2004).

  17. Kumar, S.; Mandal, A.: Studies on interfacial behavior and wettability change phenomena by ionic and nonionic surfactants in presence of alkalis and salt for enhanced oil recovery. Appl. Surf. Sci. 372, 42–51 (2016)

    Article  Google Scholar 

  18. Leslie Zhang, D.; Liu, S.; Puerto, M.; Miller, C.A.; Hirasaki, G.J.: Wettability alteration and spontaneous imbibition in oil-wet carbonate formations. J. Petrol. Sci. Eng. 52, 213–226 (2006)

    Article  Google Scholar 

  19. Li, J.; Wang, W.; Gu, Y.: Dynamic interfacial tension phenomenon and wettability alteration of crude oil-rock-alkaline-surfactant solution systems. SPE annual technical conference and exhibition: Society of Petroleum Engineers. (2004).

  20. Castro Dantas, T.N.; Soares, A.P.J.; Wanderley Neto, A.O.; Dantas Neto, A.A.; Barros Neto, E.L.: Implementing new microemulsion systems in wettability inversion and oil recovery from carbonate reservoirs. Energy Fuels 28, 6749–6759 (2014)

    Article  Google Scholar 

  21. Al-Anssari, S.; Barifcani, A.; Wang, S.; Maxim, L.; Iglauer, S.: Wettability alteration of oil-wet carbonate by silica nanofluid. J. Colloid Interface Sci. 461, 435–442 (2016)

    Article  Google Scholar 

  22. Karimi, A.; Fakhroueian, Z.; Bahramian, A.; Pour Khiabani, N.; Darabad, J.B.; Azin, R.; Arya, S.: Wettability alteration in carbonates using zirconium oxide nanofluids: EOR implications. Energy Fuels 26, 1028–1036 (2012)

    Article  Google Scholar 

  23. Sofla, S.J.D.; James, L.A.; Zhang, Y.: Toward a mechanistic understanding of wettability alteration in reservoir rocks using silica nanoparticles. E3S Web Conf.: EDP Sci. 89, 03004 (2019)

    Article  Google Scholar 

  24. Ali, J.; Manshad, A.K.; Imani, I.; Sajadi, S.M.; Keshavarz, A.: Greenly synthesized magnetite@ SiO 2@ xanthan nanocomposites and its application in enhanced oil recovery: IFT reduction and wettability alteration. Arab. J. Sci. Eng. 45, 7751–7761 (2020)

    Article  Google Scholar 

  25. Khalilinezhad, S.S.; Mobaraki, S.; Zakavi, M.; Sorkhabadi, M.O.; Cheraghian, G.; Jarrahian, K.: Mechanistic modeling of nanoparticles-assisted surfactant flood. Arab. J. Sci. Eng. 43, 6609–6625 (2018)

    Article  Google Scholar 

  26. Bin Dahbag, M.; Al-Gawfi, A.; Hassanzadeh, H.: Suitability of hot urea solutions for wettability alteration of bitumen reservoirs – Simulation of laboratory flooding experiments. Fuel 272, 117713 (2020)

    Article  Google Scholar 

  27. Almeida da Costa, A.; Costa, G.; Embiruçu, M.; Soares, J. B. P.; Trivedi, J. J.; Rocha P. S.; Souza, A.; Jaeger, P.: The Influence of rock composition and pH on reservoir wettability for low-salinity water-CO2 enhanced oil recovery applications in Brazilian reservoirs. SPE-195982-PA. Preprint, 21 (2020).

  28. Almeida, A.; Patel, R.; Arambula, C.; Trivedi, J.; Soares, J.; Costa, G.; Embiruçu, M.: Low salinity water injection in a clastic reservoir in Northeast Brazil: An experimental case study. SPE Trinidad and Tobago Section Energy Resources Conference. Port of Spain, Trinidad and Tobago: Society of Petroleum Engineers. 18 (2018).

  29. Esene, C.; Onalo, D.; Zendehboudi, S.; James, L.; Aborig, A.; Butt, S.: Modeling investigation of low salinity water injection in sandstones and carbonates: Effect of Na+ and SO42−. Fuel 232, 362–373 (2018)

    Article  Google Scholar 

  30. Mohammed, M.; Babadagli, T.: Wettability alteration: A comprehensive review of materials/methods and testing the selected ones on heavy-oil containing oil-wet systems. Adv. Coll. Interface. Sci. 220, 54–77 (2015)

    Article  Google Scholar 

  31. Yang, D.; Gu, Y.; Tontiwachwuthikul, P.: Wettability determination of the reservoir brine− reservoir rock system with dissolution of CO2 at high pressures and elevated temperatures. Energy Fuels 22, 504–509 (2008)

    Article  Google Scholar 

  32. Zhao, J.; Torabi, F.; Yang, J.: The synergistic role of silica nanoparticle and anionic surfactant on the static and dynamic CO2 foam stability for enhanced heavy oil recovery: An experimental study. Fuel 287, 119443 (2020)

    Article  Google Scholar 

  33. Telmadarreie, A.; Trivedi, J.: Pore scale visualization during carbonate heavy oil recovery: Surfactant alternating CO2 foam/polymer enhanced foam flooding. SPE Asia Pacific Enhanced Oil Recovery Conference. Kuala Lumpur, Malaysia: Society of Petroleum Engineers. 17 (2015).

  34. Derikvand, Z.; Rezaei, A.; Parsaei, R.; Riazi, M.; Torabi, F.: A mechanistic experimental study on the combined effect of Mg2+, Ca2+, and SO42- ions and a cationic surfactant in improving the surface properties of oil/water/rock system. Colloids Surf. A: Physicochem. Eng. Asp. 587, 124327 (2020)

    Article  Google Scholar 

  35. Jarrahian, K.; Seiedi, O.; Sheykhan, M.; Sefti, M.V.; Ayatollahi, S.: Wettability alteration of carbonate rocks by surfactants: A mechanistic study. Colloids Surf., A 410, 1–10 (2012)

    Article  Google Scholar 

  36. Mousavi, S.-P.; Hemmati-Sarapardeh, A.; Norouzi-Apourvari, S.; Jalalvand, M.; Schaffie, M.; Ranjbar, M.: Toward mechanistic understanding of wettability alteration in calcite and dolomite rocks: The effects of resin, asphaltene, anionic surfactant, and hydrophilic nano particles. J. Mol. Liq. 321, 114672 (2020)

    Article  Google Scholar 

  37. Roustaei, A.; Moghadasi, J.; Bagherzadeh, H.; Shahrabadi, A.: An experimental investigation of polysilicon nanoparticles' recovery efficiencies through changes in interfacial tension and wettability alteration. SPE international oilfield nanotechnology conference and exhibition: Society of Petroleum Engineers. (2012).

  38. Roustaei, A.; Bagherzadeh, H.: Experimental investigation of SiO 2 nanoparticles on enhanced oil recovery of carbonate reservoirs. J. Petrol. Explor. Prod. Technol. 5, 27–33 (2015)

    Article  Google Scholar 

  39. Sivira Ortega, D.; Kim, H.; James, L.: Wettability alteration and interactions between Silicon Dioxide (SiO2) nanoparticles and reservoir minerals in standard cores mimicking hebron field conditions for enhanced oil recovery. 2017, 1–17 (2017).

  40. Divandari, H.; Hemmati-Sarapardeh, A.; Schaffie, M.; Ranjbar, M.: Integrating synthesized citric acid-coated magnetite nanoparticles with magnetic fields for enhanced oil recovery: Experimental study and mechanistic understanding. J. Petrol. Sci. Eng. 174, 425–436 (2019)

    Article  Google Scholar 

  41. Onyekonwu, M. O.; Ogolo, N. A.: Investigating the use of nanoparticles in enhancing oil recovery. Nigeria Annual International Conference and Exhibition. Tinapa - Calabar, Nigeria: Society of Petroleum Engineers. 14 (2010).

  42. Maghzi, A.; Mohammadi, S.; Ghazanfari, M.H.; Kharrat, R.; Masihi, M.: Monitoring wettability alteration by silica nanoparticles during water flooding to heavy oils in five-spot systems: A pore-level investigation. Exp. Thermal Fluid Sci. 40, 168–176 (2012)

    Article  Google Scholar 

  43. Chen, W.: Influence of ultrasonic energy upon the rate of flow of liquids through porous media. (1969).

  44. Duhon, R.; Campbell, J.: SPE 1316—the effect of ultrasonic energy on flow through porous media. Second Annual Eastern Regional Meeting of SPE/AIME, Charleston, WV. (1965).

  45. Wang, Z.; Xu, Y.; Bajracharya, S.: The comparison of removing plug by ultrasonic wave, chemical deplugging agent and ultrasound–chemical combination deplugging for near-well ultrasonic processing technology. Ultrason. Sonochem. 27, 339–344 (2015)

    Article  Google Scholar 

  46. Ragab, A. M. S.; Fouad Snosy, M.: The effect of ultrasonic waves of EOR on the relative permeability curves. SPE Kuwait Oil and Gas Show and Conference: Society of Petroleum Engineers. (2015).

  47. Keshavarzi, B.; Karimi, R.; Najafi, I.; Ghazanfari, M.; Amani, M.; Ghotbi, C.: Investigation of low frequency elastic wave application for fluid flow percolation enhancement in fractured porous media. Pet. Sci. Technol. 31, 1159–1167 (2013)

    Article  Google Scholar 

  48. Ronchi, R. P.; Negris, L.; Melo, B. N.; Pereira, L. S.; Vicente, M. A; Flores, E. M.; Santos, M. D. F. P.: Removal of oil from synthetic heavy crude oil-in-water emulsions by the association of glass raschig rings and ultrasound. Journal of Dispersion Science and Technology. 1–11 (2020).

  49. Antes, F.G.; Diehl, L.O.; Pereira, J.S.F.; Guimarães, R.C.L.; Guarnieri, R.A.; Ferreira, B.M.S.; Flores, E.M.M.: Effect of ultrasonic frequency on separation of water from heavy crude oil emulsion using ultrasonic baths. Ultrason. Sonochem. 35, 541–546 (2017)

    Article  Google Scholar 

  50. Abramov, V.O.; Mullakaev, M.S.; Abramova, A.V.; Esipov, I.B.; Mason, T.J.: Ultrasonic technology for enhanced oil recovery from failing oil wells and the equipment for its implemention. Ultrason. Sonochem. 20, 1289–1295 (2013)

    Article  Google Scholar 

  51. Hamidi, H.; Sharifi Haddad, A.; Mohammadian, E.; Rafati, R.; Azdarpour, A.; Ghahri, P.; Ombewa, P.; Neuert, T.; Zink, A.: Ultrasound-assisted CO2 flooding to improve oil recovery. Ultrason. Sonochem. 35, 243–250 (2017)

    Article  Google Scholar 

  52. Wang, Z.; Fang, R.; Guo, H.: Advances in ultrasonic production units for enhanced oil recovery in China. Ultrason. Sonochem. 60, 104791 (2020)

    Article  Google Scholar 

  53. Abramov, V.O.; Abramova, A.V.; Bayazitov, V.M.; Mullakaev, M.S.; Marnosov, A.V.; Ildiyakov, A.V.: Acoustic and sonochemical methods for altering the viscosity of oil during recovery and pipeline transportation. Ultrason. Sonochem. 35, 389–396 (2017)

    Article  Google Scholar 

  54. Wang, Z.; Huang, J.: Research on removing reservoir core water sensitivity using the method of ultrasound-chemical agent for enhanced oil recovery. Ultrason. Sonochem. 42, 754–758 (2018)

    Article  Google Scholar 

  55. Naderi, K.; Babadagli, T.: Influence of intensity and frequency of ultrasonic waves on capillary interaction and oil recovery from different rock types. Ultrason. Sonochem. 17, 500–508 (2010)

    Article  Google Scholar 

  56. Rezaei Dehshibi, R.; Mohebbi, A.; Riazi, M.; Niakousari, M.: Experimental investigation on the effect of ultrasonic waves on reducing asphaltene deposition and improving oil recovery under temperature control. Ultrason. Sonochem. 45, 204–212 (2018)

    Article  Google Scholar 

  57. Mohsin, M.; Meribout, M.: An extended model for ultrasonic-based enhanced oil recovery with experimental validation. Ultrason. Sonochem. 23, 413–423 (2015)

    Article  Google Scholar 

  58. Kostrov, S.; Wooden, B.: Mechanisms, field suitability, and case studies for enhancement of oil recovery and production using in-situ seismic stimulation. 16th International Symposium on Nonlinear Acoustics. (2002).

  59. Amro, M.; Al Mobarky, M. A.; Al-Homadhi, E. S.: Improved oil recovery by application of sound waves to water flooding. SPE middle east oil and gas show and conference: Society of Petroleum Engineers. (2007).

  60. Hamidi, H.; Rafati, R.; Junin, R.B.; Manan, M.A.: A role of ultrasonic frequency and power on oil mobilization in underground petroleum reservoirs. J. Petrol. Explor. Prod. Technol. 2, 29–36 (2012)

    Article  Google Scholar 

  61. Shafiai, S. H.; Gohari, A.: Conventional and electrical EOR review: the development trend of ultrasonic application in EOR. Journal of Petroleum Exploration and Production Technology. 1–23 (2020).

  62. Payehghadr, M.; Eliasi, A.: Chemical compositions of Persian Gulf water around the Qeshm Island at various seasons. Asian J. Chem. 22, 5282–5288 (2010)

    Google Scholar 

  63. Extrand, C.; Kumagai, Y.: An experimental study of contact angle hysteresis. J. Colloid Interface Sci. 191, 378–383 (1997)

    Article  Google Scholar 

  64. Thomas, M. M.; Clouse, J. A.; Longo, J. M.: Adsorption of organic compounds on carbonate minerals: 1. Model compounds and their influence on mineral wettability. Chem. Geol. 109, 201–213 (1993).

  65. Hamouda, A. A.; Rezaei Gomari, K. A.: Influence of temperature on wettability alteration of carbonate reservoirs. SPE/DOE Symposium on Improved Oil Recovery. Tulsa, Oklahoma, USA: Society of Petroleum Engineers. 12 (2006).

  66. Zhang, P.; Austad, T.: Wettability and oil recovery from carbonates: Effects of temperature and potential determining ions. Colloids Surf., A 279, 179–187 (2006)

    Article  Google Scholar 

  67. Al-Anssari, S.; Wang, S.; Barifcani, A.; Lebedev, M.; Iglauer, S.: Effect of temperature and SiO2 nanoparticle size on wettability alteration of oil-wet calcite. Fuel 206, 34–42 (2017)

    Article  Google Scholar 

  68. Ahmadi, M.A.; Sheng, J.: Performance improvement of ionic surfactant flooding in carbonate rock samples by use of nanoparticles. Pet. Sci. 13, 725–736 (2016)

    Article  Google Scholar 

  69. Belova, V.; Gorin, D.A.; Shchukin, D.G.; Möhwald, H.: Controlled effect of ultrasonic cavitation on hydrophobic/hydrophilic surfaces. ACS Appl. Mater. Interfaces. 3, 417–425 (2011)

    Article  Google Scholar 

  70. Luo, X.; Gong, H.; He, Z.; Zhang, P.; He, L.: Research on mechanism and characteristics of oil recovery from oily sludge in ultrasonic fields. J. Hazard. Mater. 399, 123137 (2020)

    Article  Google Scholar 

  71. Hamida, T.; Babadagli, T.: Analysis of capillary interaction and oil recovery under ultrasonic waves. Transp. Porous Media 70, 231–255 (2007)

    Article  Google Scholar 

  72. Brenner, M.P.; Hilgenfeldt, S.; Lohse, D.: Single-bubble sonoluminescence. Rev. Modern Phys. 74, 425 (2002)

    Article  Google Scholar 

  73. Meribout, M.: On using ultrasonic-assisted enhanced oil recovery (EOR): Recent practical achievements and future prospects. IEEE Access. 6, 51110–51118 (2018)

    Article  Google Scholar 

  74. Hendraningrat, L.; Li, S.; Torsater, O.: Effect of some parameters influencing enhanced oil recovery process using silica nanoparticles: an experimental investigation. SPE Reservoir Characterization and Simulation Conference and Exhibition: Society of Petroleum Engineers. (2013).

  75. Wasan, D.T.; Nikolov, A.D.: Spreading of nanofluids on solids. Nature 423, 156–159 (2003)

    Article  Google Scholar 

  76. Rezaei Gomari, K.A.; Denoyel, R.; Hamouda, A.A.: Wettability of calcite and mica modified by different long-chain fatty acids (C18 acids). J. Colloid Interface Sci. 297, 470–479 (2006)

    Article  Google Scholar 

  77. Gomari, K.A.R.; Hamouda, A.A.; Denoyel, R.: Influence of sulfate ions on the interaction between fatty acids and calcite surface. Colloids Surf., A 287, 29–35 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Norouzi-Apourvari.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamkar, A., Hosseini, H., Norouzi-Apourvari, S. et al. Insight into the Synergic Effect of Ultrasonic Waves, SDS Surfactant, and Silica Nanoparticles on Wettability Alteration of Carbonate Rocks. Arab J Sci Eng 47, 11609–11622 (2022). https://doi.org/10.1007/s13369-021-06356-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06356-2

Keywords

Navigation