Skip to main content
Log in

Multiple Damage Identification in a Beam Using Artificial Neural Network-Based Modified Mode Shape Curvature

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In the present work, the existence of multiple damage locations is identified successfully by using the modified mode shape curvature technique in a cantilever beam. The noisy frequency response of the beam is extracted for varying damage depths at two various positions by using Bruel and Kjaer instrument. As experimentally obtained displacement mode shape data cannot reflect clear damage location in the structure due to the presence of noise, in the present work, the data have been trained through artificial neural network to obtain improved results to localize the damage locations. Numerically and experimentally obtained displacement modes are utilized as input for ANN, and the trained data are used to produce mode shape curvature. The trained data sets are then utilized to produce the mode shapes curvatures for all the damage cases using central difference approximation. Damage severity and locations are then identified by analyzing the absolute mode shape curvature difference for various damage scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

FR:

Frequency response

SHM:

Structural health monitoring

ANN:

Artificial neural network

ODS:

Operational deflection shape

M :

Mass

D :

Damping

K :

Stiffness

FFT:

Fast Fourier transfer

X( \(\omega \) ) :

Output response

F( \(\omega \) ) :

Input force

S mm :

Power spectrum

\({\gamma }^{2}\left(\omega \right)\) :

The coherence

B&K:

Bruel and Kjaer

MDOF:

Multiple degrees of freedom

y” :

Curvature

h :

Element size

e x :

Experimental data set

p x :

Predicted data set

Z k :

Input/output data set

Z k min, :

Data set (minimum)

Z k max, :

Data set (maximum)

MAPE:

Mean absolute percentage error

MSE:

Mean square error

R :

Regression coefficient

AMSC:

Absolute mode shape curvature

MMSC:

Modified mode shape curvature

FEM:

Finite element method

References

  1. Fan, W.; Qiao, P.: Vibration-based damage identification methods: a review and comparative study. Struct. Health Monit. 10(1), 83–111 (2011). https://doi.org/10.1177/1475921710365419

    Article  Google Scholar 

  2. Moughty, J.J.; Casas, J.R.: A state of the art review of modal-based damage detection in bridges: development, challenges, and solutions. Appl. Sci. 7(5), 510 (2017). https://doi.org/10.3390/app7050510

    Article  Google Scholar 

  3. Sohn, H.; Farrar, C.R.: Damage diagnosis using time series analysis of vibration signals. Smart Mater. Struct. 10(3), 446 (2001)

    Article  Google Scholar 

  4. Adams, R.D.; Cawley, P.; Pye, C.J.; Stone, B.J.: A vibration technique for non-destructively assessing the integrity of structures. J. Mech. Eng. Sci. 20(2), 93–100 (1978). https://doi.org/10.1243/JMES_JOUR_1978_020_016_02

    Article  Google Scholar 

  5. Cawley, P.; Adams, R.D.: The location of defects in structures from measurements of natural frequencies. J. Strain Anal. Eng. Design 14(2), 49–57 (1979). https://doi.org/10.1243/03093247V142049

    Article  Google Scholar 

  6. Hassiotis, S.; Jeong, G.D.: Identification of stiffness reductions using natural frequencies. J. Eng. Mech. 121(10), 1106–1113 (1995). https://doi.org/10.1061/(ASCE)0733-9399(1995)121:10(1106)

    Article  Google Scholar 

  7. Kim, J.-T.; Ryu, Y.-S.; Cho, H.-M.; Stubbs, N.: Damage identification in beam-type structures: frequency-based method vs mode-shape-based method. Eng. Struct. 25(1), 57–67 (2003). https://doi.org/10.1016/S0141-0296(02)00118-9

    Article  Google Scholar 

  8. Pan, J.; Zhang, Z.; Wu, J.; Ramakrishnan, K.R.; Singh, H.K.: A novel method of vibration modes selection for improving accuracy of frequency-based damage detection. Compos. Part B: Eng. 159, 437–446 (2019). https://doi.org/10.1016/j.compositesb.2018.08.134

    Article  Google Scholar 

  9. Shifrin, E.I.; Lebedev, I.M.: Identification of multiple cracks in a beam by natural frequencies. Euro. J. Mech.-A/Solids 84, 104076 (2020). https://doi.org/10.1016/j.jsv.2008.10.033

    Article  MathSciNet  MATH  Google Scholar 

  10. Sha, G.; Radzieński, M.; Cao, M.; Ostachowicz, W.: A novel method for single and multiple damage detection in beams using relative natural frequency changes. Mech. Syst. Signal Process. 132, 335–352 (2019)

    Article  Google Scholar 

  11. Sampaio, R.P.C.; Maia, N.M.M.; Silva, J.M.M.: Damage detection using the frequency-response-function curvature method. J. Sound Vib. 226(5), 1029–1042 (1999). https://doi.org/10.1006/jsvi.1999.2340

    Article  Google Scholar 

  12. Zang, C.; Imregun, M.: Structural damage detection using artificial neural networks and measured FRF data reduced via principal component projection. J. Sound Vib. 242(5), 813–827 (2001). https://doi.org/10.1006/jsvi.2000.3390

    Article  MATH  Google Scholar 

  13. Maia, N.M.M.; Silva, J.M.M.; Almas, E.A.M.; Sampaio, R.P.C.: Damage detection in structures: from mode shape to frequency response function methods. Mech. Syst. Signal Process. 17(3), 489–498 (2003). https://doi.org/10.1006/mssp.2002.1506

    Article  Google Scholar 

  14. Limongelli, M.P.: Frequency response function interpolation for damage detection under changing environment. Mech. Syst. Signal Process. 24(8), 2898–2913 (2010)

    Article  Google Scholar 

  15. Bandara, R.P.; Chan, T.H.; Thambiratnam, D.P.: Structural damage detection method using frequency response functions. Struct. Health Monitor.6 13(4), 418–429 (2014). https://doi.org/10.1177/1475921714522847

    Article  Google Scholar 

  16. Khanali, M.; Hayati-Soloot, A.; Høidalen, H.K.; Jayaram, S.: Study on locating transformer internal faults using sweep frequency response analysis. Electric Power Syst. Res. 145, 55–62 (2017)

    Article  Google Scholar 

  17. Khatir, S.; Dekemele, K.; Loccufier, M.; Khatir, T.; Wahab, M.A.: Crack identification method in beam-like structures using changes in experimentally measured frequencies and Particle Swarm Optimization. Comptes Rendus Mécanique 346(2), 110–120 (2018). https://doi.org/10.1016/j.crme.2017.11.008

    Article  Google Scholar 

  18. Liu, X.; Lieven, N.A.J.; Escamilla-Ambrosio, P.J.: Frequency response function shape-based methods for structural damage localisation. Mech. Syst. Signal Process. 23(4), 1243–1259 (2009). https://doi.org/10.1016/j.ymssp.2008.10.002

    Article  Google Scholar 

  19. Pu, Q.; Hong, Yu.; Chen, L.; Yang, S.; Xikun, Xu.: Model updating–based damage detection of a concrete beam utilizing experimental damped frequency response functions. Adv. Struct. Eng. 22(4), 935–947 (2019). https://doi.org/10.1177/1369433218789556

    Article  Google Scholar 

  20. Sampaio, R.P.C.; Maia, N.M.M.; Almeida, R.A.B.; Urgueira, A.P.V.: A simple damage detection indicator using operational deflection shapes. Mech. Syst. Signal Process. 72, 629–641 (2016)

    Article  Google Scholar 

  21. Gandomi, A.H.; Sahab, M.G.; Rahaei, A.; Safari Gorji, M.: Development in mode shape-based structural fault identification technique. World Appl. Sci. J. 5(1), 29–38 (2008)

    Google Scholar 

  22. Elshafey, A.A.; Marzouk, H.; Haddara, M.R.: Experimental damage identification using modified mode shape difference. J. Marine Sci. Appl. 10(2), 150–155 (2011)

    Article  Google Scholar 

  23. Gorgin R. Damage identification technique based on mode shape analysis of beam structures. In Structures, vol. 27, pp. 2300–2308. Elsevier, 2020. https://doi.org/10.1016/j.istruc.2020.08.034

  24. Bianconi, F.; Salachoris, G.P.; Clementi, F.; Lenci, S.: A genetic algorithm procedure for the automatic updating of fem based on ambient vibration tests. Sensors 20(11), 3315 (2020). https://doi.org/10.3390/s20113315

    Article  Google Scholar 

  25. Pandey, A.K.; Biswas, M.; Samman, M.M.: Damage detection from changes in curvature mode shapes. J. Sound Vib. 145(2), 321–332 (1991). https://doi.org/10.1016/0022-460X(91)90595-B

    Article  Google Scholar 

  26. Lestari, W.; Qiao, P.; Hanagud, S.: Curvature mode shape-based damage assessment of carbon/epoxy composite beams. J. Intell. Mater. Syst. Struct. 18(3), 189–208 (2007). https://doi.org/10.1177/1045389X06064355

    Article  Google Scholar 

  27. Qiao, P.; Kan, Lu.; Lestari, W.; Wang, J.: Curvature mode shape-based damage detection in composite laminated plates. Compos. Struct. 80(3), 409–428 (2007). https://doi.org/10.1016/j.compstruct.2006.05.026

    Article  Google Scholar 

  28. Cao, M.; Radzieński, M.; Wei, Xu.; Ostachowicz, W.: Identification of multiple damage in beams based on robust curvature mode shapes. Mech. Syst. Signal Process. 46(2), 468–480 (2014)

    Article  Google Scholar 

  29. He, J.; Zhou, Y.: A novel mode shape reconstruction method for damage diagnosis of cracked beam. Mech. Syst. Signal Process. 122, 433–447 (2019)

    Article  Google Scholar 

  30. Rucevskis, S.; Wesolowski, M.: Identification of damage in a beam structure by using mode shape curvature squares. Shock Vib. 17(4–5), 601–610 (2010). https://doi.org/10.3233/SAV-2010-0551

    Article  Google Scholar 

  31. Janeliukstis, R.; Ručevskis, S.; Kaewunruen, S.: Mode shape curvature squares method for crack detection in railway prestressed concrete sleepers. Eng. Fail. Anal. 105, 386–401 (2019). https://doi.org/10.1016/j.engfailanal.2019.07.020

    Article  Google Scholar 

  32. Porcu, M.C.; Patteri, D.M.; Melis, S.; Aymerich, F.: Effectiveness of the FRF curvature technique for structural health monitoring. Constr. Build. Mater. 226, 173–187 (2019)

    Article  Google Scholar 

  33. Ciambella, J.; Pau, A.; Vestroni, F.: Modal curvature-based damage localization in weakly damaged continuous beams. Mech. Syst. Signal Process. 121, 171–182 (2019). https://doi.org/10.1016/j.ymssp.2018.11.012

    Article  Google Scholar 

  34. Anjneya K, Roy K, Response surface-based structural damage identification using dynamic responses." In Structures, vol. 29, pp. 1047–1058. Elsevier, 2021. https://doi.org/10.1016/j.istruc.2020.11.033

  35. Nayyar, A.; Baneen, U.; Naqvi, S.A.Z.; Ahsan, M.: Detection and localization of multiple small damages in beam. Adv. Mech. Eng. 13(1), 1687814020987329 (2021). https://doi.org/10.1177/1687814020987329

    Article  Google Scholar 

  36. Nick, H.; Aziminejad, A.: Vibration-based damage identification in steel girder bridges using artificial neural network under noisy conditions. J. Nondestr. Eval. 40(1), 1–22 (2021)

    Article  Google Scholar 

  37. Lee, S.; Park, S.; Kim, T.; Lieu, Q.X.; Lee, J.: Damage quantification in truss structures by limited sensor-based surrogate model. Appl. Acoust. 172, 107547 (2021). https://doi.org/10.1016/j.apacoust.2020.107547

    Article  Google Scholar 

  38. QX Lieu, VH Luong, J Lee. Structural damage identification using adaptive hybrid evolutionary firefly algorithm. In Applications of firefly algorithm and its variants, pp. 75–97. Springer, Singapore, 2020. https://doi.org/10.1007/978-981-15-0306-1_4

  39. Yazdekhasti, S.; Piratla, K.R.; Atamturktur, S.; Khan, A.: Experimental evaluation of a vibration-based leak detection technique for water pipelines. Struct. Infrastruct. Eng. 14(1), 46–55 (2018). https://doi.org/10.1080/15732479.2017.1327544

    Article  Google Scholar 

  40. Brigham, E.O.: The Fast Fourier Transform and Applications. Prentice Hall, Englewood Cliffs, NJ (1988)

    Google Scholar 

  41. Zenzen R, Samir Khatir, Belaidi I, Wahab MA. Structural health monitoring of beam-like and truss structures using frequency response and particle swarm optimization. In Numerical Modelling in Engineering, pp. 390–399. Springer, Singapore, 2018

  42. Worden, K.; Farrar, C.R.; Haywood, J.; Todd, M.: A review of nonlinear dynamics applications to structural health monitoring. Struct. Control Health Monitor. Official J. Int. Assoc. Struct. Control Monitor. Euro. Assoc. Control Struct. 15(4), 540–567 (2008)

    Google Scholar 

  43. Bishop, C.M.: Neural networks for pattern recognition. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  44. Ismail, H.M.; Ng, H.K.; Queck, C.W.; Gan, S.: Artificial neural networks modelling of engine-out responses for a light-duty diesel engine fuelled with biodiesel blends.". Appl. Energy 92, 769–777 (2012)

    Article  Google Scholar 

  45. Yusaf, T.F.; Buttsworth, D.R.; Saleh, K.H.; Yousif, B.F.: CNG-diesel engine performance and exhaust emission analysis with the aid of artificial neural network. Appl. Energy 87(5), 1661–1669 (2010). https://doi.org/10.1016/j.apenergy.2009.10.009

    Article  Google Scholar 

  46. Roy, S.; Banerjee, R.; Das, A.; Bose, P.K.: Development of an ANN based system identification tool to estimate the performance-emission characteristics of a CRDI assisted CNG dual fuel diesel engine. J. Nat. Gas Sci. Eng. 21, 147–158 (2014). https://doi.org/10.1016/j.jngse.2014.08.002

    Article  Google Scholar 

  47. Basheer, I.A.; Hajmeer, M.: Artificial neural networks: fundamentals, computing, design, and application. J. Microbiol. Methods 43(1), 3–31 (2000). https://doi.org/10.1016/S0167-7012(00)00201-3

    Article  Google Scholar 

  48. Bhowmik S., Panua R., Debroy D., Paul A. "Artificial neural network prediction of diesel engine performance and emission fueled with Diesel–Kerosene–Ethanol Blends: A fuzzy-based optimization." J. Energy Resour. Technol. 139 no. 4 (2017)

  49. Hassoun, M.H.: Fundamentals of artificial neural networks. MIT press, Cambridge (1995)

    MATH  Google Scholar 

  50. Badri, L.: Development of neural networks for noise reduction. Int. Arab J. Inf. Technol. 7(3), 289–294 (2010)

    Google Scholar 

  51. Modal-based FE model updating via Genetic Algorithms: exploiting artificial intelligence to build realistic numerical models of historical structures. “Construction and Building Materials” 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonu Kumar Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S.K., Das, S. Multiple Damage Identification in a Beam Using Artificial Neural Network-Based Modified Mode Shape Curvature. Arab J Sci Eng 47, 4849–4864 (2022). https://doi.org/10.1007/s13369-021-06267-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06267-2

Keywords

Navigation