Skip to main content
Log in

Thermodynamic Modeling and Analysis of Proton Ceramic Fuel Cells: Power Optimization

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The principal objective of the present work is to realize thermodynamic modeling and analysis of the Proton Ceramic Fuel Cell (PCFC); particular attention is given to evaluate and optimize the power density generated by PCFCs according to the electrolyte, anode, and cathode thicknesses, water content in the oxidant and fuel, operating temperature, current density, and voltage. To implement the thermodynamic model, the PCFC voltage is represented by the difference between the Nernst potential and the total voltage loss generated in the electrolyte and electrodes (ohmic, activation, and concentration overpotentials) during PCFC operation. A FORTRAN program is developed to study the impact of these parameters on PCFC power density. After comparing the obtained results in this investigation to those of literature that are measured experimentally, they are presented a good concordance with root mean square error (RMSE) and mean bias error of 0.0572 and 0.0058, respectively. The conducted optimization, in this work, is realized based on the graphical method. The most important conclusions are summed in two points, PCFC power density is proportional to the operating temperature, and it is inversely proportional to the electrolyte and electrodes thicknesses and fuel and air humidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dai, H.; Kou, H.; Wang, H.; Bi, L.: Electrochemical performance of protonic ceramic fuel cells with stable BaZrO3-based electrolyte: a mini-review. Electrochem. Commun. 96, 11–15 (2018)

    Article  Google Scholar 

  2. Zeng, S.M.; Parbey, J.; Yu, G.S.; Xua, M.; Li, T.S.; Andersson, M.: Thermal stress analysis of sulfur deactivated solid oxide fuel cells. J. Power Sour. 379, 134–143 (2018)

    Article  Google Scholar 

  3. Sahli, Y.; Zitouni, B.; Ben-Moussa, H.: Thermodynamic optimization of the solid oxyde fuel cell electric power. Univ. Politehnica Bucharest Sci. Bull. Ser. B Chem. Mater. Sci. 80, 159–170 (2018)

    Google Scholar 

  4. Iwahara, H.; Esaka, T.; Uchida, H.; Maeda, N.: Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ion. 3–4, 359–363 (1981)

    Article  Google Scholar 

  5. Iwahara, H.; Uchida, H.; Maeda, N.: High temperature fuel and steam electrolysis cells using proton conductive solid electrolytes. J. Power Sour. 7, 293–301 (1982)

    Article  Google Scholar 

  6. Prakash, B.S.; Pavitra, R.; Kumar, S.S.; Aruna, S.T.: Electrolyte bi-layering strategy to improve the performance of an intermediate temperature solid oxide fuel cell: a review. J. Power Sour. 381, 136–155 (2018)

    Article  Google Scholar 

  7. Fabbri, E.; Bi, L.; Pergolesi, D.; Traversa, E.: Towards the next generation of solid oxide fuel cells operating below 600 °C with chemically stable proton-conducting electrolytes. Adv. Mater. 24, 195–208 (2012)

    Article  Google Scholar 

  8. An, H.; Lee, H.W.; Kim, B.K., et al.: A 5 × 5 cm2 protonic ceramic fuel cell with a power density of 1.3 W cm–2 at 600 °C. Nat. Energy 3, 870–875 (2018)

    Article  Google Scholar 

  9. Antunes, I.; Pérez-Coll, D.; Nasani, N., et al.: Mechanochemical processing of BaZr1−yYyO3−δ (y = 0.15, 0.20) protonic ceramic electrolytes: phase purity, microstructure, electrical properties and comparison with other preparation routes. Int. J. Hydrog. Energy 46, 13606–13621 (2021). https://doi.org/10.1016/j.ijhydene.2020.06.222

    Article  Google Scholar 

  10. Ma, Y.; Huang, J.; He, B.: Scalable fabrication process for new structure BaZr0.8Y0.2O3-δ-based protonic ceramic fuel cells. Ceram. Int. 47, 14680–14688 (2021). https://doi.org/10.1016/j.ceramint.2021.01.264

    Article  Google Scholar 

  11. Wang, R.; Lau, G.Y.; Ding, D.; Zhu, T.; Tucker, M.C.: Approaches for co-sintering metal-supported proton-conducting solid oxide cells with Ba(Zr, Ce, Y, Yb)O3-d electrolyte. Int. J. Hydrog. Energy 44, 13768–13776 (2019)

    Article  Google Scholar 

  12. Pers, P.; Mao, V.; Taillades, M.; Taillades, G.: Electrochemical behavior and performances of Ni-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ cermet anodes for protonic ceramic fuel cell. Int. J. Hydrog. Energy 43, 2402–2409 (2018)

    Article  Google Scholar 

  13. Nasani, N.; Ramasamy, D.; Brandão, A.D.; Yaremchenko, A.A.; Fagg, D.P.: The impact of porosity, pH2 and pH2O on the polarisation resistance of Ni–BaZr0.85Y0.15O3−δ cermet anodes for protonic ceramic fuel cells (PCFCs). Int. J. Hydrog. Energy 39, 21231–21241 (2014)

    Article  Google Scholar 

  14. Shin, E.-K.; Anggia, E.; Parveen, A.S.; Park, J.-S.: Optimization of the protonic ceramic composition in composite electrodes for high-performance protonic ceramic fuel cells. Int. J. Hydrog. Energy 44, 31323–31332 (2019)

    Article  Google Scholar 

  15. Cui, J.; Wang, J.; Zhang, X.; Li, G.; Wu, K.; Cheng, Y.; Zhou, J.: Low thermal expansion material Bi0.5Ba0.5FeO3-δ in application for proton-conducting ceramic fuel cells cathode. Int. J. Hydrog. Energy 44, 21127–21135 (2019)

    Article  Google Scholar 

  16. Lee, H.; Lee, S.; Lee, T.; Park, S.; Shin, D.: Long term stability of porosity gradient composite cathode controlled by electro-static slurry spray deposition. Int. J. Hydrog. Energy 42, 3748–3752 (2017)

    Article  Google Scholar 

  17. Zhang, L.; Yang, S.; Zhang, S.; Yang, Y.: Cerium and Gadolinium co-doped perovskite oxide for a protonic ceramic fuel cell cathode. Int. J. Hydrog. Energy 44, 27921–27929 (2019)

    Article  Google Scholar 

  18. Loureiro, F.J.A.; Ramasamy, D.; Mikhalev, S.M., et al.: La4Ni3O10±δ – BaCe0.9Y0.1O3-δ cathodes for proton ceramic fuel cells; short-circuiting analysis using BaCe0.9Y0.1O3-δ symmetric cells. Int. J. Hydrog. Energy 46, 13594–13605 (2021). https://doi.org/10.1016/j.ijhydene.2020.06.243

    Article  Google Scholar 

  19. Wang, R.; Sun, Z.; Choi, J.P.; Basu, S.N.; Stevenson, J.W.; Tucker, M.C.: Ferritic stainless steel interconnects for protonic ceramic electrochemical cell stacks: oxidation behavior and protective coatings. Int. J. Hydrog. Energy 44, 25297–25309 (2019)

    Article  Google Scholar 

  20. Gao, J.; Meng, Y.; Hong, T.; Kim, S.; Lee, S.; He, K.; Brinkman, K.S.: Rational anode design for protonic ceramic fuel cells by a one-step phase inversion method. J. Power Sour. 418, 162–166 (2019)

    Article  Google Scholar 

  21. Zamfirescu, C.; Dincer, I.: Thermodynamic performance analysis and optimization of a SOFC-H+ system. Thermochim. Acta 486, 32–40 (2009)

    Article  Google Scholar 

  22. Li, K.; Araki, T.; Kawamura, T.; Ota, A.; Okuyama, Y.: Numerical analysis of current efficiency distributions in a protonic ceramic fuel cell using Nernst-Planck-Poisson model. Int. J. Hydrog. Energy 45, 34139–34149 (2020). https://doi.org/10.1016/j.ijhydene.2020.09.143

    Article  Google Scholar 

  23. Zhang, Q.; Guo, Y.; Ding, J.; Jiang, G.: New approaches for the determination of electrochemical parameters in the model of proton-conducting solid oxide fuel cell. Electrochim. Acta 318, 560–571 (2019)

    Article  Google Scholar 

  24. Patcharavorachot, Y.; Arpornwichanop, A.: Investigation of a proton-conducting SOFC with internal autothermal reforming of methane. Comput. Aided Chem. Eng. 30, 307–311 (2012). https://doi.org/10.1016/B978-0-444-59519-5.50062-9

    Article  Google Scholar 

  25. Sahli, Y.; Mohammedi, A.; Tamerabet, M.; Ben-Moussa, H.: Optimization study of the produced electric power by PCFCs. In: Khellaf, A. (Ed.) Advances in renewable hydrogen and other sustainable energy carriers. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-6595-3_26

    Chapter  Google Scholar 

  26. Menon, V.; Banerjee, A.; Dailly, J.; Deutschmann, O.: Numerical analysis of mass and heat transport in proton-conducting SOFCs with direct internal reforming. Appl. Energy 149, 161–175 (2015)

    Article  Google Scholar 

  27. Kalinci, Y.; Dincer, I.: Analysis and performance assessment of NH3 and H2 fed SOFC with proton-conducting electrolyte. Int. J. Hydrog. Energy 43, 5795–5807 (2018)

    Article  Google Scholar 

  28. Zhang, Q.; Guo, Y.; Ding, J.; Xia, S.: Hole conductivity in the electrolyte of proton-conducting SOFC: mathematical model and experimental investigation. J. Alloys Compd. 801, 343–351 (2019)

    Article  Google Scholar 

  29. Sahli, Y.; Zitouni, B.; Ben-Moussa, H.: Solid oxide fuel cell thermodynamic study. Çankaya Univ. J. Sci. Eng. 14, 134–151 (2017)

    Google Scholar 

  30. Arpornwichanop, A.; Patcharavorachot, Y.; Assabumrungrat, S.: Analysis of a proton-conducting SOFC with direct internal reforming. Chem. Eng. Sci. 65, 581–589 (2010)

    Article  Google Scholar 

  31. Arpornwichanop, A.; Patcharavorachot, Y.: Investigation of a proton-conducting SOFC with internal autothermal reforming of methane. Chem. Eng. Res. Des. 91, 1508–1516 (2013)

    Article  Google Scholar 

  32. Zhang, J.-H.; Lei, L.-B.; Liu, Di.; Zhao, F.-Y.; Ni, M.; Chen, F.: Mathematical modeling of a proton-conducting solid oxide fuel cell with current leakage. J. Power Sour. 400, 333–340 (2018)

    Article  Google Scholar 

  33. Zheng, K.-Q.; Ni, M.; Sun, Q.; Shen, L.-Y.: Mathematical analysis of SOFC based on co-ionic conducting electrolyte. Acta Mech. Sin. 29, 388–394 (2013)

    Article  Google Scholar 

  34. Bavarian, M.; Soroush, M.: Mathematical modeling and steady-state analysis of a proton-conducting solid oxide fuel cell. J. Process Control 22, 1521–1530 (2012)

    Article  Google Scholar 

  35. Patcharavorachot, Y.; Brandon, N.P.; Paengjuntuek, W.; Assabumrungrat, S.; Arpornwichanop, A.: Analysis of planar solid oxide fuel cells based on proton-conducting electrolyte. Solid State Ion. 181, 1568–1576 (2010)

    Article  Google Scholar 

  36. Ferguson, J.R.; Fiard, J.M.; Herbin, R.: Three-dimensional numerical simulation for various geometries of solid oxide fuel cells. J. Power Sour. 58, 109–122 (1996)

    Article  Google Scholar 

  37. Bao, C.; Cai, N.; Croiset, E.: A multi-level simulation platform of natural gas internal reforming solid oxide fuel cell–gas turbine hybrid generation system – Part II. Balancing units model library and system simulation. J. Power Sour. 196, 8424–8434 (2011)

    Article  Google Scholar 

  38. Youcef, S.; Bariza, Z.; Houcine, M.; Hocine, B.-M.: Three-dimensional numerical study of the anode supported intermediate temperature solid oxide fuel cell overheating. Int. J. Heat Technol. 37, 1099–1106 (2019)

    Article  Google Scholar 

  39. Sahli, Y.; Ben-Moussa, H.; Zitouni, B.: Optimization study of the produced electric power by SOFCs. Int. J. Hydrog. Energy 44, 22445–22454 (2019)

    Article  Google Scholar 

  40. Cheng, T.C.; Huang, T.Y.; Chen, C.F., et al.: Analysis of an intermediate-temperature proton-conducting SOFC hybrid system. Int. J. Green Energy 13, 1640–1647 (2016)

    Article  Google Scholar 

  41. Ni, M.; Leung, M.K.H.; Leung, D.Y.C.: Mathematical modelling of proton-conducting solid oxide fuel cells and comparison with oxygen-ion-conducting counterpart. Fuel Cells 07, 269–278 (2007)

    Article  Google Scholar 

  42. Potter, A.R.; Baker, R.T.: Impedance studies on Pt|SrCe0.95Yb0.05O3|Pt under dried and humidified air, argon and hydrogen. Solid State Ion. 177, 1917–1924 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youcef Sahli.

Ethics declarations

Conflict of interest

The author declares that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahli, Y. Thermodynamic Modeling and Analysis of Proton Ceramic Fuel Cells: Power Optimization. Arab J Sci Eng 47, 6355–6363 (2022). https://doi.org/10.1007/s13369-021-06262-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06262-7

Keywords

Navigation