Skip to main content
Log in

Experimental and Computational Study of Lithium Salt-/Plastic Crystal-Assisted Ionogels

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In the present study, to accomplish the requirement of an economical endurable quasi-solid-state electrolyte, ionogels have been prepared by nonhydrolytic sol–gel method. Ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, succinonitrile (N≡C–CH2CH2–C≡N), and LiClO4 are incorporated inside the non-conductive matrix of silicon dioxide (SiO2). The structural, vibrational, and thermal properties are studied using experimental techniques. Highly amorphous nature of SM2 and SM4 which contain SCN and SCN with a lithium salt, respectively, in comparison with pure ionogel (SM1) and assisted with lithium salt (SM3) was confirmed by X-ray diffraction and differential scanning calorimetry techniques. The existence of different characteristic peaks in SM1, SM2, SM3, and SM4 ionogels was confirmed by FTIR analysis. The density functional theory was used to study the interaction between the molecules of ionogels. The selectivity and reactivity of the ionogels were investigated using the HOMO–LUMO levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen, X.; Put, B.; Sagara, A.; Gandrud, K.; Murata, M.; Steele, J.A.; Yabe, H.; Hantschel, T.; Roeffaers, M.; Tomiyama, M.; Arase, H.; Kaneko, Y.; Shimada, M.; Mees, M.; Vereecken, P.M.: Silica gel solid nanocomposite electrolytes with interfacial conductivity promotion exceeding the bulk Li-ion conductivity of the ionic liquid electrolyte filler. Sci. Adv. (2020). https://doi.org/10.1126/sciadv.aav3400

    Article  Google Scholar 

  2. Li, M.; Wang, C.; Chen, Z.; Xu, K.; Lu, J.: New concepts in electrolytes. Chem. Rev. (2020). https://doi.org/10.1021/acs.chemrev.9b00531

    Article  Google Scholar 

  3. Dubois, L.; Liang, Y.; Yao, Y.; Poizot, P.: Opportunities and challenges for organic electrodes in electrochemical energy storage. Chem. Rev. (2019). https://doi.org/10.1021/acs.chemrev.9b00482

    Article  Google Scholar 

  4. Bhatt, M.D.; O’Dwyer, C.: Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Phys. Chem. Chem. Phys. 17, 4799–4844 (2015). https://doi.org/10.1039/c4cp05552g

    Article  Google Scholar 

  5. Chen, N.; Zhang, H.; Li, L.; Chen, R.; Guo, S.: Ionogel electrolytes for high-performance lithium batteries: a review. Adv. Energy Mater. 8, 1–27 (2018). https://doi.org/10.1002/aenm.201702675

    Article  Google Scholar 

  6. Singh, M.P.; Singh, R.K.; Chandra, S.: Ionic liquids confined in porous matrices: physicochemical properties and applications. Prog. Mater. Sci. 64, 73–120 (2014). https://doi.org/10.1016/j.pmatsci.2014.03.001

    Article  Google Scholar 

  7. Na, W.; Lee, A.S.; Lee, J.H.; Hong, S.M.; Kim, E.; Koo, C.M.: Hybrid ionogel electrolytes with POSS epoxy networks for high temperature lithium ion capacitors. Solid State Ionics 309, 27–32 (2017). https://doi.org/10.1016/j.ssi.2017.06.017

    Article  Google Scholar 

  8. Welton, T.: Ionic liquids: a brief history. Biophys. Rev. 10, 691–706 (2018). https://doi.org/10.1007/s12551-018-0419-2

    Article  Google Scholar 

  9. Shahzad, S.; Shah, A.; Kowsari, E.; Iftikhar, F.J.; Nawab, A.; Piro, B.; Akhter, M.S.; Rana, U.A.; Zou, Y.: Ionic Liquids as environmentally benign electrolytes for high-performance supercapacitors. Glob. Challenges. 3, 1800023 (2018). https://doi.org/10.1002/gch2.201800023

    Article  Google Scholar 

  10. Vioux, A.; Coasne, B.: From ionogels to biredox ionic liquids: some emerging opportunities for electrochemical energy storage and conversion devices. Adv. Energy Mater. 7, 1–13 (2017). https://doi.org/10.1002/aenm.201700883

    Article  Google Scholar 

  11. Gao, H.J.; Dai, S.; Lin, J.S.; Ju, Y.H.; Barnes, C.E.; Pennycook, S.J.; Gao, H.J.; Lin, J.S.; Pennycook, S.J.; Barnes, C.E.: Preparation of silica aerogel using ionic liquids as solvents. Chem. Commun. (2002). https://doi.org/10.1039/a907147d

    Article  Google Scholar 

  12. Gupta, A.K.; Verma, Y.L.; Singh, M.P.; Singh, R.K.: Role of reduced precursor and solvolytic reagent molar ratio on preparation and properties of ionogel. J. Solid State Chem. 242, 29–37 (2016). https://doi.org/10.1016/j.jssc.2016.07.008

    Article  Google Scholar 

  13. Singh, M.P.; Mandal, S.K.; Verma, Y.L.; Gupta, A.K.; Singh, R.K.; Chandra, S.: Viscoelastic, surface, and volumetric properties of ionic liquids [BMIM][OcSO4], [BMIM][PF6], and [EMIM][MeSO3]. J. Chem. Eng. Data 59, 2349–2359 (2014). https://doi.org/10.1021/je5000617

    Article  Google Scholar 

  14. Le Bideau, J.; Viau, L.; Vioux, A.: Ionogels, ionic liquid based hybrid materials. Chem. Soc. Rev. 40, 907–925 (2011). https://doi.org/10.1039/c0cs00059k

    Article  Google Scholar 

  15. Ori, G.; Villemot, F.; Viau, L.; Vioux, A.; Coasne, B.: Ionic liquid confined in silica nanopores: molecular dynamics in the isobaric-isothermal ensemble. Mol. Phys. 112, 1350–1361 (2014). https://doi.org/10.1080/00268976.2014.902138

    Article  Google Scholar 

  16. Brevet, D.; Jouannin, C.; Tourné-Péteilh, C.; Devoisselle, J.M.; Vioux, A.; Viau, L.: Self-encapsulation of a drug-containing ionic liquid into mesoporous silica monoliths or nanoparticles by a sol-gel process. RSC Adv. 6, 82916–82923 (2016). https://doi.org/10.1039/c6ra17431k

    Article  Google Scholar 

  17. Meyer, M.; Vechambre, C.; Viau, L.; Mehdi, A.; Fontaine, O.; Mourad, E.; Monge, S.; Chenal, J.M.; Chazeau, L.; Vioux, A.: Single-ion conductor nanocomposite organic-inorganic hybrid membranes for lithium batteries. J. Mater. Chem. A. 2, 12162–12165 (2014). https://doi.org/10.1039/c4ta02132k

    Article  Google Scholar 

  18. Mourad, E.; Coustan, L.; Lannelongue, P.; Zigah, D.; Mehdi, A.; Vioux, A.; Freunberger, S.A.; Favier, F.; Fontaine, O.: Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors. Nat. Mater. 16, 446–454 (2017). https://doi.org/10.1038/NMAT4808

    Article  Google Scholar 

  19. Chaurasia, S.K.; Shalu; Gupta, A.K.; Verma, Y.L.; Singh, V.K.; Tripathi, A.K.; Saroj, A.L.; Singh, R.K.: Role of ionic liquid [BMIMPF6] in modifying the crystallization kinetics behavior of the polymer electrolyte PEO-LiClO4. RSC Adv. 5, 8263–8277 (2015). https://doi.org/10.1039/c4ra12951b

    Article  Google Scholar 

  20. Gupta, A.K.; Singh, R.K.; Chandra, S.: Crystallization kinetics behavior of ionic liquid [EMIM][BF4 ] confined in mesoporous silica matrices. RSC Adv. 4, 22277–22287 (2014). https://doi.org/10.1039/c4ra01785d

    Article  Google Scholar 

  21. Gupta, A.K.; Verma, Y.L.; Singh, R.K.; Chandra, S.: Studies on an ionic liquid confined in silica nanopores: Change in T g and evidence of organic-inorganic linkage at the pore wall surface. J. Phys. Chem. C. 118, 1530–1539 (2014). https://doi.org/10.1021/jp408142a

    Article  Google Scholar 

  22. Gupta, A.K.; Singh, R.K.; Chandra, S.: Studies on mesoporous silica ionogels prepared by sol-gel method at different gelation temperatures. RSC Adv. 3, 13869–13877 (2013). https://doi.org/10.1039/c3ra41774c

    Article  Google Scholar 

  23. Gupta, A.K.; Singh, M.P.; Singh, R.K.; Chandra, S.: Low density ionogels obtained by rapid gellification of tetraethyl orthosilane assisted by ionic liquids. Dalt. Trans. 41, 6263–6271 (2012). https://doi.org/10.1039/c2dt30318c

    Article  Google Scholar 

  24. Kaswan, R.; Singh, M.D.; Chandrasekara Sivasubramanian, S.; Dalvi, A.: Preparation and characterization of novel solid electrolytes based on [EMIM][BF4] and lithium nitrate confined silica gels. Electrochim. Acta. 323, 134841 (2019). https://doi.org/10.1016/j.electacta.2019.134841

    Article  Google Scholar 

  25. Ashby, D.S.; DeBlock, R.H.; Lai, C.H.; Choi, C.S.; Dunn, B.S.: Patternable, solution-processed ionogels for thin-film lithium-ion electrolytes. Joule. 1, 344–358 (2017). https://doi.org/10.1016/j.joule.2017.08.012

    Article  Google Scholar 

  26. Ashby, D.S.; DeBlock, R.H.; Choi, C.S.; Sugimoto, W.; Dunn, B.: Electrochemical and spectroscopic analysis of the ionogel-electrode interface. ACS Appl. Mater. Interfaces. (2019). https://doi.org/10.1021/acsami.9b00093

    Article  Google Scholar 

  27. Famprikis, T.; Canepa, P.; Dawson, J.A.; Islam, M.S.; Masquelier, C.: Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019). https://doi.org/10.1038/s41563-019-0431-3

    Article  Google Scholar 

  28. Zainuddin, Z.; Hambali, D.; Supa’at, I.; Osman, Z.: Ionic conductivity, ionic transport and electrochemical characterizations of plastic crystal polymer electrolytes. Ionics (Kiel). 23, 265–273 (2017). https://doi.org/10.1007/s11581-016-1836-5

    Article  Google Scholar 

  29. Kumar, B.; Rodrigues, S.J.; Koka, S.: The crystalline to amorphous transition in PEO-based composite electrolytes: role of lithium salts. Electrochim. Acta 47, 4125–4131 (2002). https://doi.org/10.1016/S0013-4686(02)00442-5

    Article  Google Scholar 

  30. Long, S.; MacFarlane, D.R.; Forsyth, M.: Fast ion conduction in molecular plastic crystals. Solid State Ionics 161, 105–112 (2003). https://doi.org/10.1016/S0167-2738(03)00208-X

    Article  Google Scholar 

  31. Gupta, R.K.; Bedja, I.; Islam, A.; Shaikh, H.: Electrical, structural, and thermal properties of succinonitrile-LiI-I2 redox-mediator. Solid State Ionics 326, 166–172 (2018). https://doi.org/10.1016/j.ssi.2018.10.008

    Article  Google Scholar 

  32. Liu, K.; Zhang, Q.; Thapaliya, B.P.; Sun, X.G.; Ding, F.; Liu, X.; Zhang, J.; Dai, S.: In situ polymerized succinonitrile-based solid polymer electrolytes for lithium ion batteries. Solid State Ionics 345, 115159 (2020). https://doi.org/10.1016/j.ssi.2019.115159

    Article  Google Scholar 

  33. Alarco, P.J.; Abu-Lebdeh, Y.; Abouimrane, A.; Armand, M.: The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors. Nat. Mater. 3, 476–481 (2004). https://doi.org/10.1038/nmat1158

    Article  Google Scholar 

  34. Ersoy, B.; AltIntas, Y.; Karadaʇ, S.B.; Aksöz, S.; Keşlioʇlu, K.; MaraşlI, N.: Solid-liquid interfacial energy of solid succinonitrile in equilibrium with succinonitrile-1,4-diiodobenzene eutectic liquid. J. Therm. Anal. Calorim. 119, 1867–1874 (2015). https://doi.org/10.1007/s10973-014-4363-5

    Article  Google Scholar 

  35. Marom, R.; Haik, O.; Aurbach, D.; Halalay, I.C.: Revisiting LiClO4 as an electrolyte for rechargeable lithium-ion batteries. J. Electrochem. Soc. 157, A972 (2010). https://doi.org/10.1149/1.3447750

    Article  Google Scholar 

  36. Gohel, K.; Kanchan, D.K.: Ionic conductivity and relaxation studies in PVDF-HFP: PMMA-based gel polymer blend electrolyte with LiClO4 salt. J. Adv. Dielectr. 8, 1–13 (2018). https://doi.org/10.1142/S2010135X18500054

    Article  Google Scholar 

  37. Shen, Y.; Deng, G.H.; Ge, C.; Tian, Y.; Wu, G.; Yang, X.; Zheng, J.; Yuan, K.: Solvation structure around the Li+ ion in succinonitrile-lithium salt plastic crystalline electrolytes. Phys. Chem. Chem. Phys. 18, 14867–14873 (2016). https://doi.org/10.1039/c6cp02878k

    Article  Google Scholar 

  38. Das, S.; Ghosh, A.: Ionic relaxation in PEO/PVDF-HFP-LiClO4 blend polymer electrolytes: dependence on salt concentration. J. Phys. D. Appl. Phys. 49, 235601 (2016). https://doi.org/10.1088/0022-3727/49/23/235601

    Article  Google Scholar 

  39. Arjunan, V.; Marchewka, M.K.; Kalaivani, M.: Synthesis, vibrational and quantum chemical investigations of hydrogen bonded complex betaine dihydrogen selenite. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 96, 744–758 (2012). https://doi.org/10.1016/j.saa.2012.07.054

    Article  Google Scholar 

  40. Montazerozohori, M.; Sedighipoor, M.: Synthesis, spectral identification, electrochemical behavior and theoretical investigation of new zinc complexes of bis((E) 3-(2-nitrophenyl)-2-propenal)propane-1,2-diimine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 96, 70–76 (2012). https://doi.org/10.1016/j.saa.2012.05.011

    Article  Google Scholar 

  41. Tankov, I.; Yankova, R.; Genieva, S.; Mitkova, M.; Stratiev, D.: Density functional theory study on the ionic liquid pyridinium hydrogen sulfate. J. Mol. Struct. 1139, 400–406 (2017). https://doi.org/10.1016/j.molstruc.2017.03.040

    Article  Google Scholar 

  42. Forsman, J.; Woodward, C.E.; Trulsson, M.: A classical density functional theory of ionic liquids. J. Phys. Chem. B. 115, 4606–4612 (2011). https://doi.org/10.1021/jp111747w

    Article  Google Scholar 

  43. Neese, F.: Software update: the ORCA program system, version 4.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, 1–6 (2018). https://doi.org/10.1002/wcms.1327

    Article  Google Scholar 

  44. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, Jr., J.A.; Vreven, T.; Kudin, K.N.; Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Pet, G. A.; J.A.P.: Gaussian 03, Revision C.02 (2004)

  45. Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R.: Avogadro An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 4(1), 17 (2012). https://doi.org/10.1186/1758-2946-4-17

    Article  Google Scholar 

  46. Choudhary, V.K.; Bhatt, A.K.; Dash, D.; Sharma, N.: DFT calculations on molecular structures, HOMO–LUMO study, reactivity descriptors and spectral analyses of newly synthesized diorganotin(IV) 2-chloridophenylacetohydroxamate complexes. J. Comput. Chem. 40, 2354–2363 (2019). https://doi.org/10.1002/jcc.26012

    Article  Google Scholar 

  47. Chengula, P.J.; Pogrebnaya, T.; Pogrebnoi, A.: Ionic liquids based on 1-ethyl-3-methylimidazolium cation and anions of tetrafluoroborate and bis(trifluoromethylsulfonyl)imide: Structural and thermodynamic properties by DFT study. J. Mol. Liq. 299, 112209 (2020). https://doi.org/10.1016/j.molliq.2019.112209

    Article  Google Scholar 

  48. Van Aken, K.L.; Beidaghi, M.; Gogotsi, Y.: Formulation of ionic-liquid electrolyte to expand the voltage window of supercapacitors. Angew. Chemie Int. Ed. 54, 4806–4809 (2015). https://doi.org/10.1002/anie.201412257

    Article  Google Scholar 

  49. Paulechka, Y.U.; Kabo, G.J.; Blokhin, A.V.; Shaplov, A.S.; Lozinskaya, E.I.; Golovanov, D.G.; Lyssenko, K.A.; Korlyukov, A.A.; Vygodskii, Y.S.: IR and X-ray study of polymorphism in 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imides. J. Phys. Chem. B. 113, 9538–9546 (2009). https://doi.org/10.1021/jp903702c

    Article  Google Scholar 

  50. Bhatt, M.D.; Cho, M.; Cho, K.: Conduction of Li + cations in ethylene carbonate (EC) and propylene carbonate (PC): Comparative studies using density functional theory. J. Solid State Electrochem. 16, 435–441 (2012). https://doi.org/10.1007/s10008-011-1350-7

    Article  Google Scholar 

  51. Singh, M.P.; Singh, R.K.; Chandra, S.: Studies on imidazolium-based ionic liquids having a large anion confined in a nanoporous silica gel matrix. J. Phys. Chem. B. 115, 7505–7514 (2011). https://doi.org/10.1021/jp2003358

    Article  Google Scholar 

  52. Fredlake, C.P.; Crosthwaite, J.M.; Hert, D.G.; Aki, S.N.V.K.; Brennecke, J.F.: Thermophysical properties of imidazolium-based ionic liquids. J. Chem. Eng. Data 49, 954–964 (2004). https://doi.org/10.1021/je034261a

    Article  Google Scholar 

  53. Chen, R.; Liu, F.; Chen, Y.; Ye, Y.; Huang, Y.; Wu, F.; Li, L.: An investigation of functionalized electrolyte using succinonitrile additive for high voltage lithium-ion batteries. J. Power Sources 306, 70–77 (2016). https://doi.org/10.1016/j.jpowsour.2015.10.105

    Article  Google Scholar 

  54. Raut, P.; Li, S.; Chen, Y.M.; Zhu, Y.; Jana, S.C.: Strong and flexible composite solid polymer electrolyte membranes for li-ion batteries. ACS Omega 4, 18203–18209 (2019). https://doi.org/10.1021/acsomega.9b00885

    Article  Google Scholar 

  55. Verma, M.L.; Rao, B.K.; Singh, R.; Banchor, D.; Sahu, H.D.: Ab initio study of mechanical strength of solid polymer electrolyte (PEO)5LiClO4. Ionics (Kiel). 23, 2715–2720 (2017). https://doi.org/10.1007/s11581-017-2025-x

    Article  Google Scholar 

  56. Kavya Valsan, E.; John, A.; Raghavendra, M.; Ravikumar, H.B.: Free volume controlled ionic conductivity in poly vinyl alcohol/zinc acetate solid polymer electrolytes. J. Electrochem. Soc. 167, 060525 (2020). https://doi.org/10.1149/1945-7111/ab861e

    Article  Google Scholar 

  57. Holzwarth, U.; Gibson, N.: The Scherrer equation versus the “Debye–Scherrer equation.” Nat. Nanotechnol. 6, 534 (2011). https://doi.org/10.1038/nnano.2011.145

    Article  Google Scholar 

  58. Trenzado, J.L.; Rodríguez, Y.; Gutiérrez, A.; Cincotti, A.; Aparicio, S.: Experimental and molecular modeling study on the binary mixtures of [EMIM][BF4] and [EMIM][TFSI]. Ionic. J. Mol. Liq. 334, 116049 (2021). https://doi.org/10.1016/j.molliq.2021.116049

    Article  Google Scholar 

  59. Abidi, S.S.A.; Garg, U.; Azim, Y.; Alam, M.; Gupta, A.K.; Pradeep, C.P.; Azum, N.; Asiri, A.M.: Spectroscopic, structural, DFT and molecular docking studies on novel cocrystal salt hydrate of chromotropic acid and its antibiofilm activity. Arab. J. Sci. Eng. 46, 353–364 (2021). https://doi.org/10.1007/s13369-020-04822-x

    Article  Google Scholar 

  60. Alam, M.; Kim, Y.; Park, S.: Quantum chemical calculations, spectroscopic studies and biological activity of organic-inorganic hybrid compound (2,2-dimethylpropane-1,3-diammonium) tetrachlorozincate(II). Arab. J. Sci. Eng. 44, 631–645 (2019). https://doi.org/10.1007/s13369-018-3573-8

    Article  Google Scholar 

  61. Peljo, P.; Girault, H.H.: Electrochemical potential window of battery electrolytes: the HOMO-LUMO misconception. Energy Environ. Sci. 11, 2306–2309 (2018). https://doi.org/10.1039/c8ee01286e

    Article  Google Scholar 

  62. Sarkar, R.; Kundu, T.K.: Nonbonding interaction analyses on PVDF/[BMIM][BF4] complex system in gas and solution phase. J. Mol. Model. (2019). https://doi.org/10.1007/s00894-019-4020-9

    Article  Google Scholar 

  63. Ramaite, I.D.I.; van Ree, T.: Computational studies of substituted phenylboronic acids in common electrolyte solvents. Arab. J. Sci. Eng. 42, 4227–4238 (2017). https://doi.org/10.1007/s13369-017-2612-1

    Article  Google Scholar 

  64. Yoosefian, M.; Etminan, N.: The role of solvent polarity in the electronic properties, stability and reactivity trend of a tryptophane/Pd doped SWCNT novel nanobiosensor from polar protic to non-polar solvents. RSC Adv. 6, 64818–64825 (2016). https://doi.org/10.1039/c6ra14006h

    Article  Google Scholar 

  65. Shamim, S.U.D.; Hussain, T.; Hossian, M.R.; Hossain, M.K.; Ahmed, F.; Ferdous, T.; Hossain, M.A.: A DFT study on the geometrical structures, electronic, and spectroscopic properties of inverse sandwich monocyclic boron nanoclusters ConBm (n = 1.2; m = 6–8). J. Mol. Model. 26, 10 (2020). https://doi.org/10.1007/s00894-020-04419-z

    Article  Google Scholar 

  66. Bredas, J.L.: Mind the gap! Mater. Horizons. 1, 17–19 (2014). https://doi.org/10.1039/c3mh00098b

    Article  Google Scholar 

  67. Goodenough, J.B.; Kim, Y.: Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010). https://doi.org/10.1021/cm901452z

    Article  Google Scholar 

  68. Kazemiabnavi, S.; Zhang, Z.; Thornton, K.; Banerjee, S.: Electrochemical stability window of imidazolium-based ionic liquids as electrolytes for lithium batteries. J. Phys. Chem. B. 120, 5691–5702 (2016). https://doi.org/10.1021/acs.jpcb.6b03433

    Article  Google Scholar 

  69. Rustomji, C.S.; Rustomji, C.S.; Yang, Y.; Kim, T.K.; Mac, J.; Kim, Y.J.; Caldwell, E.; Chung, H.; Shirley, Y.: Liquefied gas electrolytes for electrochemical energy storage devices. ECS Meet. Abstr. 4263, 1–18 (2017). https://doi.org/10.1149/ma2017-02/1/68

    Article  Google Scholar 

  70. Saroj, A.L.; Singh, R.K.; Chandra, S.: Thermal, vibrational, and dielectric studies on PVP/LiBF4 + ionic liquid [EMIM][BF4]-based polymer electrolyte films. J. Phys. Chem. Solids. 75, 849–857 (2014). https://doi.org/10.1016/j.jpcs.2014.02.005

    Article  Google Scholar 

  71. Dhumal, N.R.; Noack, K.; Kiefer, J.; Kim, H.J.: Molecular structure and interactions in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J. Phys. Chem. A 13, 2547–2557 (2014). https://doi.org/10.1021/jp502124y

    Article  Google Scholar 

  72. Umar, Y.; Morsy, M.A.: Ab initio and DFT studies of the molecular structures and vibrational spectra of succinonitrile. Spectrochimica Acta Part A Mol. Biomol. Spectroscopy 66, 1133–1140 (2007). https://doi.org/10.1016/j.saa.2006.05.026

    Article  Google Scholar 

  73. Tripathi, A.K.; Singh, R.K.: Immobilization induced molecular compression of ionic liquid in ordered mesoporous matrix. J. Phys. D Appl. Phys. 51, 10 (2018). https://doi.org/10.1088/1361-6463/aaa56c

    Article  Google Scholar 

  74. Khurana, S.; Chandra, A.: Ion conducting polymer-silica hybrid ionogels obtained via non-aqueous sol-gel route. Solid State Ionics 340, 115027 (2019). https://doi.org/10.1016/j.ssi.2019.115027

    Article  Google Scholar 

  75. Das, S.; Prathapa, S.J.; Menezes, P.V.; Row, T.N.G.; Bhattacharyya, A.J.: Study of ion transport in lithium perchlorate-succinonitrile plastic crystalline electrolyte via ionic conductivity and in situ cryo-crystallography. J. Phys. Chem. B. 113, 5025–5031 (2009). https://doi.org/10.1021/jp809465u

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. M.K. Gupta for FTIR, Scientist & Assistant Professor (AcSIR) CSIR-Advanced Materials and Research Institute, Bhopal (Council of Scientific & Industrial Research, Government of India), Habibganj (M.P.), India. We thank the UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore, M.P., India, for use of the XRD and DSC facilities set-up. The authors would like to acknowledge the support of Dr. Amarjeet Yadav, BBAU, Lucknow (U.P.), India for his fruitfull discussion related to Gaussian03. The authors would like to acknowledge the research initiation grant (RIG/975/2018) and support of TEQIP-III, M. M. U. T., Gorakhpur (U.P.), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Kumar Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S.K., Gupta, A.K. Experimental and Computational Study of Lithium Salt-/Plastic Crystal-Assisted Ionogels. Arab J Sci Eng 47, 935–947 (2022). https://doi.org/10.1007/s13369-021-05859-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05859-2

Keywords

Navigation