Skip to main content
Log in

A New Knowledge of Water Magnetism Phenomenon

  • Technical Note-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The phenomenon of magnetization of water by an electromagnetic field (EMF) represented a major challenge in the current research. The aim of this work is to improve the efficiency of the electromagnetic device and make the magnetic treatment as efficient as possible. In other words, the characterizations of the parameters that influence the process of magnetization of tap water (TW) were investigated. The Aqua-4D device generates an EMF playing the role of an external impulse, which will influence the magnetization of TW with a speed of 0.2 m / s, T = 26.5° C and pH = 8.25. The circulation of TW under the effect of the EMF generates magnetized water. The parameters were estimated after stopping the EMF. The magnetization time of water was monitored by the Kobra interface using the software Latis pro. It was shown that the magnetization time of the treated water persisted about 15 h, the magnetization time is strongly influenced by temperature, salinity, velocity but the pH has no influence on the magnetization time. The water molecules represented a major challenge in the current research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Data Availability

Data will be available on request.

References

  1. Pang, X.-F.; Deng, B.: The changes of macroscopic features and microscopic structures of water under influence of magnetic field. Physica B 403, 3571–3577 (2008). https://doi.org/10.1016/j.physb.2008.05.032

    Article  Google Scholar 

  2. Higashitani, K.; Oshitani, J.: Magnetic effects on thickness of adsorbed layer in aqueous solutions evaluated directly by atomic force microscope. J. Colloid Interface Sci. 204, 363–368 (1998). https://doi.org/10.1006/jcis.1998.5590

    Article  Google Scholar 

  3. Semikhina, L.P.; Kiselev, V.F.: Effect of weak magnetic fields on the properties of water and ice. Sov. Phys. J. 31, 351–354 (1988). https://doi.org/10.1007/BF01243721

    Article  Google Scholar 

  4. Amiri, M.C.; Dadkhah, A.A.: On reduction in the surface tension of water due to magnetic treatment. Colloids Surf., A 278, 252–255 (2006). https://doi.org/10.1016/j.colsurfa.2005.12.046

    Article  Google Scholar 

  5. Coey, J.M.D.; Cass, S.: Magnetic water treatment. J. Magn. Magn. Mater. 209, 71–74 (2000). https://doi.org/10.1016/S0304-8853(99)00648-4

    Article  Google Scholar 

  6. Cai, R.; Yang, H.; He, J.; Zhu, W.: The effects of magnetic fields on water molecular hydrogen bonds. J. Mol. Struct. 938, 15–19 (2009). https://doi.org/10.1016/j.molstruc.2009.08.037

    Article  Google Scholar 

  7. Toledo, E.J.L.; Ramalho, T.C.; Magriotis, Z.M.: Influence of magnetic field on physical–chemical properties of the liquid water: Insights from experimental and theoretical models. J. Mol. Struct. 888, 409–415 (2008). https://doi.org/10.1016/j.molstruc.2008.01.010

    Article  Google Scholar 

  8. Chang, K.-T.; Weng, C.-I.: The effect of an external magnetic field on the structure of liquid water using molecular dynamics simulation. J. Appl. Phys. 100, 043917 (2006). https://doi.org/10.1063/1.2335971

    Article  Google Scholar 

  9. Liu, B.; Gao, B.; Xu, X.; Hong, W.; Yue, Q.; Wang, Y.; Su, Y.: The combined use of magnetic field and iron-based complex in advanced treatment of pulp and paper wastewater. Chem. Eng. J. 178, 232–238 (2011). https://doi.org/10.1016/j.cej.2011.10.058

    Article  Google Scholar 

  10. Chibowski, E.; Szcześ, A.: Magnetic water treatment–a review of the latest approaches. Chemosphere 203, 54–67 (2018). https://doi.org/10.1016/j.chemosphere.2018.03.160

    Article  Google Scholar 

  11. Madsen, H.E.L.: Influence of magnetic field on the precipitation of some inorganic salts. J. Cryst. Growth 152, 94–100 (1995). https://doi.org/10.1016/0022-0248(95)00103-4

    Article  Google Scholar 

  12. Kobe, S.; Dražić, G.; Cefalas, A.C.; Sarantopoulou, E.; Stražišar, J.: Nucleation and crystallization of CaCO3 in applied magnetic fields. Crystal Engineering, Crystal Chemistry of Functional Materials II, Proceedings of Symposium L, E-MRS Spring Meeting, June 18–21, 5, pp 243–253 (2002 ). https://doi.org/10.1016/S1463-0184(02)00035-7

  13. Silva, I.B.; Queiroz Neto, J.C.; Petri, D.F.S.: The effect of magnetic field on ion hydration and sulfate scale formation. Colloids Surf., A 465, 175–183 (2015). https://doi.org/10.1016/j.colsurfa.2014.10.054

    Article  Google Scholar 

  14. Hołysz, L.; Chibowski, E.; Szcześ, A.: Influence of impurity ions and magnetic field on the properties of freshly precipitated calcium carbonate. Water Res. 37, 3351–3360 (2003). https://doi.org/10.1016/S0043-1354(03)00159-3

    Article  Google Scholar 

  15. Su, N.; Wu, Y.-H.; Mar, C.-Y.: Effect of magnetic water on the engineering properties of concrete containing granulated blast-furnace slag. Cem. Concr. Res. 30, 599–605 (2000). https://doi.org/10.1016/S0008-8846(00)00215-5

    Article  Google Scholar 

  16. Zaidi, N.S.; Sohaili, J.; Muda, K.; Sillanpää, M.: Magnetic field application and its potential in water and wastewater treatment systems. Sep. Purif. Rev. 43, 206–240 (2014). https://doi.org/10.1080/15422119.2013.794148

    Article  Google Scholar 

  17. Chang, M.-C.; Tai, C.Y.: Effect of the magnetic field on the growth rate of aragonite and the precipitation of CaCO3. Chem. Eng. J. 164, 1–9 (2010). https://doi.org/10.1016/j.cej.2010.07.018

    Article  Google Scholar 

  18. Cefalas, A.C.; Sarantopoulou, E.; Kollia, Z.; Riziotis, C.; Dražic, G.; Kobe, S.; Stražišar, J.; Meden, A.: Magnetic field trapping in coherent antisymmetric states of liquid water molecular rotors. J. Comput. Theor. Nanosci. 7(9), 1800-1805 (2010). https://doi.org/10.1166/jctn.2010.1544

    Article  Google Scholar 

  19. Gryta, M.: The influence of magnetic water treatment on CaCO3 scale formation in membrane distillation process. Sep. Purif. Technol. 80, 293–299 (2011). https://doi.org/10.1016/j.seppur.2011.05.008

    Article  Google Scholar 

  20. Koshoridze, S.I.; Levin, Yu.K.: The influence of a magnetic field on the coagulation of nanosized colloid particles. Tech. Phys. Lett. 40, 716–719 (2014). https://doi.org/10.1134/S1063785014080227

    Article  Google Scholar 

  21. Umeki, S.; Kato, T.; Shimabukuro, H.; Yoshikawa, N.; Taniguchi, S.; Tohji, K.: Elucidation of the scale prevention effect by alternating magnetic treatment. AIP Conf. Proc. 898, 170–174 (2007). https://doi.org/10.1063/1.2721273

    Article  Google Scholar 

  22. Umeki, S.; Shimabukuro, H.; Watanabe, T.; Kato, T.; Taniguchi, S.; Tohji, K.: Effect of AC electromagnetic field on zeta potential of calcium carbonate. AIP Conf. Proc. 987, 70–73 (2008). https://doi.org/10.1063/1.2896982

    Article  Google Scholar 

  23. Holysz, L.; Szczes, A.; Chibowski, E.: Effects of a static magnetic field on water and electrolyte solutions. J. Colloid Interface Sci. 316, 996–1002 (2007). https://doi.org/10.1016/j.jcis.2007.08.026

    Article  Google Scholar 

  24. Deng, B.; Pang, X.: Variations of optic properties of water under action of static magnetic field. Chin. Sci. Bull. 52, 3179–3182 (2007). https://doi.org/10.1007/s11434-007-0430-7

    Article  Google Scholar 

  25. Tierno, P.; Muruganathan, R.; Fischer, T.M.: Viscoelasticity of dynamically self-assembled paramagnetic colloidal clusters. Phys. Rev. Lett. 98, 028301 (2007). https://doi.org/10.1103/PhysRevLett.98.028301

    Article  Google Scholar 

  26. Martín Algarra, R.V.; Lahuerta Zamora, L.; Antón Fos, G.M.; Alemán López, P.A.: Magnetized water: Science or fraud? J. Chem. Educ. 85, 1416 (2008). https://doi.org/10.1021/ed085p1416

    Article  Google Scholar 

  27. Sronsri, C.; U-yen, K.; Sittipol, W.: Analyses of vibrational spectroscopy, thermal property and salt solubility of magnetized water. J. Mol. Liq. 323, 114613 (2021). https://doi.org/10.1016/j.molliq.2020.114613

    Article  Google Scholar 

  28. Ben Amor, H.; Elaoud, A.; Ben Hassen, H.; Ben Amor, T.; Ben Salah, N.; Stuerga, D.; Elmoueddeb, K.: Experimental study and data analysis of the effects of ions in water on evaporation under static magnetic conditions. Arab J Sci Eng (2021). https://doi.org/10.1007/s13369-021-05519-5

    Article  Google Scholar 

  29. Viswat, E.; Hermans, L.J.F.; Beenakker, J.J.M.: Experiments on the influence of magnetic fields on the viscosity of water and a water-NaCl solution. The Physics of Fluids 25, 1794–1796 (1982). https://doi.org/10.1063/1.863656

    Article  Google Scholar 

  30. Lipus, L.C.; Krope, J.; Garbai, L.: Modified scale crystallization and dispersion stability in magnetic water treatment. Hung. J. Ind. Chem. (2001). https://doi.org/10.1515/hjic-2001-03

    Article  Google Scholar 

  31. Lipus, L.C.; Krope, J.; Crepinsek, L.: Dispersion destabilization in magnetic water treatment. J. Colloid Interface Sci. 236, 60–66 (2001). https://doi.org/10.1006/jcis.2000.7392

    Article  Google Scholar 

  32. Szkatula, A.; Balanda, M.; Kopeć, M.: Magnetic treatment of industrial water. Silica activation. The European Physical Journal - Applied Physics 18, 41–49 (2002). https://doi.org/10.1051/epjap:2002025

    Article  Google Scholar 

  33. Montagnier, L.; Aissa, J.; Giudice, E.D.; Lavallee, C.; Tedeschi, A.; Vitiello, G.: DNA waves and water. J. Phys. Conf. Ser. 306, 012007 (2011). https://doi.org/10.1088/1742-6596/306/1/012007

    Article  Google Scholar 

  34. Cheikh, O.; Elaoud, A.; Amor, H.B.; Hozayn, M.: Effect of permanent magnetic field on the properties of static water and germination of cucumber seeds (2018). https://doi.org/10.14741/IJMCR.V6I01.10916

  35. Maheshwari, B.L.; Grewal, H.S.: Magnetic treatment of irrigation water: its effects on vegetable crop yield and water productivity. Agric. Water Manag. 96, 1229–1236 (2009). https://doi.org/10.1016/j.agwat.2009.03.016

    Article  Google Scholar 

  36. Ueno, S.: Studies on magnetism and bioelectromagnetics for 45 years: from magnetic analog memory to human brain stimulation and imaging. Bioelectromagnetics 33, 3–22 (2012). https://doi.org/10.1002/bem.20714

    Article  Google Scholar 

  37. Weili, L.; Jichao, H.; Xingfu, Z.; Yong, L.: Calculation of ventilation cooling, three-dimensional electromagnetic fields, and temperature fields of the end region in a large water–hydrogen–hydrogen-cooled turbogenerator. IEEE Trans. Industr. Electron. 60, 3007–3015 (2013). https://doi.org/10.1109/TIE.2012.2202359

    Article  Google Scholar 

  38. Tijing, L.D.; Lee, D.-H.; Kim, D.-W.; Cho, Y.I.; Kim, C.S.: Effect of high-frequency electric fields on calcium carbonate scaling. Desalination 279, 47–53 (2011). https://doi.org/10.1016/j.desal.2011.05.072

    Article  Google Scholar 

  39. Tijing, L.D.; Kim, C.S.; Lee, D.H.; Cho, Y.I.: Physical water treatment using oscillating electric fields to mitigate scaling in heat exchangers. In Cheng, L. (Ed.), Frontiers and Progress in Multiphase Flow I, Frontiers and Progress in Multiphase Flow. Springer International Publishing, Cham, pp. 105–155 (2014). https://doi.org/10.1007/978-3-319-04358-6_3

  40. Coey, J.M.D.: Permanent magnet applications. J. Magn. Magn. Mater. 248, 441–456 (2002). https://doi.org/10.1016/S0304-8853(02)00335-9

    Article  Google Scholar 

  41. Demchuk, L.A.; Kostur, I.N.; Mikhelman, A.I.; Sukhan, V.S.: . Unit for processing fresh water of injection wells in a magnetic field. Izv. Vyssh. Uchebn. Zaved., Neft Gaz; (USSR) 9 (1982).

  42. Bikul’chyus, G.; Ruchinskene, A.; Deninis, V., : Corrosion behavior of low-carbon steel in tap water treated with permanent magnetic field. Prot. Met 39, 443–447 (2003). https://doi.org/10.1023/A:1025890601669

    Article  Google Scholar 

  43. Andrés, J.; Marzán, I.; Ayarza, P.; Martí, D.; Palomeras, I.; Torné, M.; Campbell, S.; Carbonell, R.: Curie point depth of the Iberian Peninsula and surrounding margins. A thermal and tectonic perspective of its evolution. J. Geophys. Res. Solid Earth 123, 2049–2068 (2018). https://doi.org/10.1002/2017JB014994

    Article  Google Scholar 

  44. Busch, K.W.; Busch, M.A.: Laborator studies on magnetic water treatment and their relationship to a possible mechanism for scale reduction. Desalination 109, 131–148 (1997). https://doi.org/10.1016/S0011-9164(97)00059-3

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank company Planet Horizons Technologies SA (Switzerland), to provide assistance in Aqua-4D electromagnetic processing equipment.

Funding

No funds received to carry out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Redouane Mghaiouini.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest in publishing this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mghaiouini, R., Salah, M., Monkade, M. et al. A New Knowledge of Water Magnetism Phenomenon. Arab J Sci Eng 47, 1129–1136 (2022). https://doi.org/10.1007/s13369-021-05750-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05750-0

Keywords

Navigation