Skip to main content
Log in

A Non-Probabilistic Neutrosophic Entropy-Based Method For High-Order Fuzzy Time-Series Forecasting

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Over the years, numerous fuzzy time-series forecasting (FTSF) models have been developed to handle the uncertainty and non-determinism in the time-series (TS) data. To handle the non-determinism and indeterminacy, researchers have considered either intuitionistic fuzzy set or hesitant fuzzy set theory. However, in both the fuzzy set theories (FST), the degree of indeterminacy is a dependent value and always lies in the range [0, 1]. Hence, these two fuzzy set theories fail to model the indeterminacy value when the degree of non-membership fluctuates due to hesitancy. Motivated from this, we have considered neutrosophic entropy-based fuzzy time-series forecasting (NEBFTSF) model where the neutrosophic entropy of each observation in the TS is used to capture the indeterminacy. Apart from this, the triangular membership value for each observation is used to illustrate the non-probabilistic uncertainty in the TS. The present research mainly focuses on three concepts such as 1) an adaptive method is used to partition the universe of discourse (UOD) into unequal length of intervals (LOIs), 2) for the first time the fuzzy logical relationships (FLRs) are established by considering the ratio trend variation (RTV) data with mean of aggregated entropy value of each crisp observation, and 3) to obtain the forecasted values both de-trending and de-normalization are employed. To assess the forecasting performance of the proposed model, 11 TS datasets with ten distinct profound forecasting models are considered. The Friedman and Nemenyi hypothesis test and Wilcoxon signed rank test conform the forecasting efficiency and reliability of the NEBFTSF model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Zadeh, L.A.: Fuzzy sets. Information Control. 338–353 (1965). Doi: https://doi.org/10.1109/2.53

  2. Song, Q.; Chissom, B.S.: Forecasting enrollments with fuzzy time series - Part I. Fuzzy Sets and Syst. (1993). https://doi.org/10.1016/0165-0114(93)90355-L

    Article  Google Scholar 

  3. Song, Q.; Chissorn, B.S.: Forecasting enrollments with fuzzy time series-part II. Fuzzy Sets Syst. 62, 1–8 (1994)

    Article  Google Scholar 

  4. Sullivan, J.; Woodall, W.H.: A comparison of fuzzy forecasting and Markov modeling. Fuzzy Sets Syst. 64, 279–293 (1994). https://doi.org/10.1016/0165-0114(94)90152-X

    Article  Google Scholar 

  5. Chen, S.M.: Forecasting enrollments based on fuzzy time series. Fuzzy Sets Syst. 81, 311–319 (1996). https://doi.org/10.1016/0165-0114(95)00220-0

    Article  Google Scholar 

  6. Chen, S.M.: Forecasting enrollments based on high-order fuzzy time series. Cybern. Syst. 33, 1–16 (2002). https://doi.org/10.1080/019697202753306479

    Article  MATH  Google Scholar 

  7. Own, C.M.; Yu, P.T.: Forecasting fuzzy time series on a heuristic high-order model. Cybern. Syst. 36, 705–717 (2005). https://doi.org/10.1080/01969720591008922

    Article  MATH  Google Scholar 

  8. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986). https://doi.org/10.1016/S0165-0114(86)80034-3

    Article  MATH  Google Scholar 

  9. Gangwar, S.S.; Kumar, S.: Probabilistic and intuitionistic fuzzy sets-based method for fuzzy time series forecasting. Cybern. Syst. 45, 349–361 (2014). https://doi.org/10.1080/01969722.2014.904135

    Article  MATH  Google Scholar 

  10. Joshi, D.K.; Kumar, S.: Entropy of interval-valued intuitionistic hesitant fuzzy set and its application to group decision making problems. Granul. Comput. 3, 367–381 (2018). https://doi.org/10.1007/s41066-018-0077-6

    Article  Google Scholar 

  11. Kumar, S.; Gangwar, S.S.: A fuzzy time series forecasting method induced by intuitionistic fuzzy sets. Int. J. Model. Simul. Scientific Comput. 6, 1550041 (2015). https://doi.org/10.1142/S1793962315500415

    Article  Google Scholar 

  12. Kumar, S.; Gangwar, S.S.: Intuitionistic fuzzy time series: An approach for handling nondeterminism in time series forecasting. IEEE Transactions Fuzzy Syst. 24, 1270–1281 (2016). https://doi.org/10.1109/TFUZZ.2015.2507582

    Article  Google Scholar 

  13. Pattanayak, R.M.; Behera, H.S.; Panigrahi, S.: A novel probabilistic intuitionistic fuzzy set based model for high order fuzzy time series forecasting. Eng. Appl. Artif. Intell. 99, 104136 (2021). https://doi.org/10.1016/j.engappai.2020.104136

    Article  Google Scholar 

  14. Torra, V., Narukawa, Y.: On hesitant fuzzy sets and decision. IEEE International Conference on Fuzzy Systems. 1378–1382 (2009). https://doi.org/10.1109/FUZZY.2009.5276884

  15. Torra, V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 25, 529–539 (2010). https://doi.org/10.1002/int.20418

    Article  MATH  Google Scholar 

  16. Chen, S.M.; Hong, J.A.: Multicriteria linguistic decision making based on hesitant fuzzy linguistic term sets and the aggregation of fuzzy sets. Information Sci. 286, 63–74 (2014). https://doi.org/10.1016/j.ins.2014.06.020

    Article  Google Scholar 

  17. Lee, L.W.; Chen, S.M.: Fuzzy decision making based on likelihood-based comparison relations of hesitant fuzzy linguistic term sets and hesitant fuzzy linguistic operators. Information Sci. 294, 513–529 (2015). https://doi.org/10.1016/j.ins.2014.09.061

    Article  MathSciNet  MATH  Google Scholar 

  18. Bisht, K.; Kumar, S.: Fuzzy time series forecasting method based on hesitant fuzzy sets. Expert Syst. Appl. 64, 557–568 (2016). https://doi.org/10.1016/j.eswa.2016.07.044

    Article  Google Scholar 

  19. Smarandache, F.: Neutrosophic set – a generalization of The intuitionistic fuzzy set. Int. J. Pure Appl. Math. 24, 287–297 (2005)

    MathSciNet  MATH  Google Scholar 

  20. Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R.: Single valued neutrosophic sets. Multispace Multistructure. 4, 410–413 (2010)

    Google Scholar 

  21. Zhang, H.; Wang, J.; Chen, X.: Interval neutrosophic sets and their application in multicriteria decision making problems. Scientific World J. 2014, 1–15 (2014). https://doi.org/10.1155/2014/645953

    Article  Google Scholar 

  22. Cheng, H.; Guo, Y.: A new neutrosophic approach to image thresholding. New Math Natural Comput. 04, 291–308 (2008). https://doi.org/10.1142/S1793005708001082

    Article  Google Scholar 

  23. Deli, I., Ali, M., Smarandache, F.: Bipolar neutrosophic sets and their application based on multi-criteria decision making problems. In: 2015 International Conference on Advanced Mechatronic Systems (ICAMechS). pp. 249–254. IEEE (2015)

  24. Ye, J.: Multicriteria decision-making method using the correlation coefficient under single-valued neutrosophic environment. Int J. Gen. Syst. 42, 386–394 (2013). https://doi.org/10.1080/03081079.2012.761609

    Article  MathSciNet  MATH  Google Scholar 

  25. Lotfi, F.H.; Fallahnejad, R.: Imprecise Shannon’s entropy and multi attribute decision making. Entropy 12, 53–62 (2010). https://doi.org/10.3390/e12010053

    Article  MATH  Google Scholar 

  26. Szmidt, E.; Kacprzyk, J.: Entropy for intuitionistic fuzzy sets. Fuzzy Sets Syst. 118, 467–477 (2001). https://doi.org/10.1016/S0165-0114(98)00402-3

    Article  MathSciNet  MATH  Google Scholar 

  27. Singh, P.; Huang, Y.-P.: A high-order neutrosophic-neuro-gradient descent algorithm-based expert system for time series forecasting. Int. J. Fuzzy Syst. 21, 2245–2257 (2019). https://doi.org/10.1007/s40815-019-00690-2

    Article  Google Scholar 

  28. Gupta, K.K.; Kumar, S.: A novel high-order fuzzy time series forecasting method based on probabilistic fuzzy sets. Granul. Comput. 4, 699–713 (2019). https://doi.org/10.1007/s41066-019-00168-4

    Article  Google Scholar 

  29. Wang, Y.; Lei, Y.; Fan, X.; Wang, Y.: Intuitionistic fuzzy time series forecasting model based on intuitionistic fuzzy reasoning. Math. Problems Eng. 2016, 1–12 (2016). https://doi.org/10.1155/2016/5035160

    Article  MathSciNet  MATH  Google Scholar 

  30. Pattanayak, R.M., Behera, H.S., Rath, R.K.: A Higher Order Neuro-Fuzzy Time Series Forecasting Model Based on Un-equal Length of Interval. In: International Conference on Application of Robotics in Industry using Advanced Mechanisms. pp. 34–45 (2020)

  31. Pattanayak, R.M.; Behera, H.S.; Panigrahi, S.: A multi-step-ahead fuzzy time series forecasting by using hybrid chemical reaction optimization with pi-sigma higher-order neural network. In: Das, A., Nayak, J., Naik, B., Pati, S., Pelusi, D. (eds.) Computational Intelligence in Pattern Recognition, pp. 1029–1041. Springer, Singapore (2020)

    Chapter  Google Scholar 

  32. Pattanayak, R.M.; Behera, H.S.; Panigrahi, S.: A novel hybrid differential evolution-PSNN for fuzzy time series forecasting. In: Behera, H., Nayak, J., Naik, B., Pelusi, D. (eds.) Computational Intelligence in Data Mining, pp. 675–687. Springer, Singapore (2020)

    Chapter  Google Scholar 

  33. Huarng, K.: Effective lengths of intervals to improve forecasting in fuzzy time series. Fuzzy Sets Systs. 123, 387–394 (2001). https://doi.org/10.1016/S0165-0114(00)00057-9

    Article  MathSciNet  MATH  Google Scholar 

  34. Huarng, K.; Yu, T.H.K.: Ratio-based lengths of intervals to improve fuzzy time series forecasting. IEEE Transactions Syst Man Cybern Part B: Cybern. 36, 328–340 (2006). https://doi.org/10.1109/TSMCB.2005.857093

    Article  Google Scholar 

  35. Panigrahi, S.; Behera, H.S.: A study on leading machine learning techniques for high order fuzzy time series forecasting. Eng. Appl. Artif. Intell. 87, 103245 (2020). https://doi.org/10.1016/j.engappai.2019.103245

    Article  Google Scholar 

  36. Yu, T.H.K.; Huarng, K.H.: A neural network-based fuzzy time series model to improve forecasting. Expert Syst. Appl. 37, 3366–3372 (2010). https://doi.org/10.1016/j.eswa.2009.10.013

    Article  Google Scholar 

  37. Cagcag Yolcu, O.; Lam, H.K.: A combined robust fuzzy time series method for prediction of time series. Neurocomputing 247, 87–101 (2017). https://doi.org/10.1016/j.neucom.2017.03.037

    Article  Google Scholar 

  38. Cortes, C.; Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995). https://doi.org/10.1007/BF00994018

    Article  MATH  Google Scholar 

  39. Vapnik, V.N.: The Nature of Statistical Learning Theory. Statistics for Engineering and Information Science, Springer, New York (2000)

    Book  Google Scholar 

  40. Tsang, I.W.; Kwok, J.T.; Cheung, P.M.: Core vector machines: Fast SVM training on very large data sets. J. Mach. Learn. Res. 6, 363–392 (2005)

    MathSciNet  MATH  Google Scholar 

  41. Aladag, C.H.; Basaran, M.A.; Egrioglu, E.; Yolcu, U.; Uslu, V.R.: Forecasting in high order fuzzy times series by using neural networks to define fuzzy relations. Expert Syst. Appl. 36, 4228–4231 (2009). https://doi.org/10.1016/j.eswa.2008.04.001

    Article  Google Scholar 

  42. Aladag, C.H.: Using multiplicative neuron model to establish fuzzy logic relationships. Expert Syst. Appl. 40, 850–853 (2013). https://doi.org/10.1016/j.eswa.2012.05.039

    Article  Google Scholar 

  43. Bas, E.; Grosan, C.; Egrioglu, E.; Yolcu, U.: High order fuzzy time series method based on pi-sigma neural network. Eng. Appl. Artif. Intell. 72, 350–356 (2018). https://doi.org/10.1016/j.engappai.2018.04.017

    Article  Google Scholar 

  44. Gupta, K.K.; Kumar, S.: Hesitant probabilistic fuzzy set based time series forecasting method. Granul. Comput. 4, 739–758 (2019). https://doi.org/10.1007/s41066-018-0126-1

    Article  Google Scholar 

  45. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Behera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pattanayak, R.M., Behera, H.S. & Panigrahi, S. A Non-Probabilistic Neutrosophic Entropy-Based Method For High-Order Fuzzy Time-Series Forecasting. Arab J Sci Eng 47, 1399–1421 (2022). https://doi.org/10.1007/s13369-021-05718-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05718-0

Keywords

Navigation