Skip to main content
Log in

Determination of Methanol Loss Due to Vaporization in Gas Hydrate Inhibition Process Using Intelligent Connectionist Paradigms

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The clathrate hydrate formation in pipelines and treatment systems of gas and natural gas liquid (NGL) is an undesirable operating phenomenon. It interrupts the gas flow continuity, reduces safety level, and imposes substantial costs on both gas and NGL processing plants. Therefore, it is necessary to prevent or at least postpone this undesired and high-risk phenomenon. The application of inhibitor agents to shift phase equilibrium of gas hydrate formation to lower temperatures and higher pressures is a mature technology. Methanol (MeOH) is a well-known thermodynamic agent in the hydrate inhibition process that cyclically injects to the gas phase and then recovers and reuses. Significant amounts of methanol vaporize/loss during its recovery in a three-phase separator. An accurate determination of this loss is necessary to estimate the amount of methanol make-up. Therefore, this study tries to determine the methanol loss using six intelligent connectionist approaches, i.e., least-squares support vector machines (LS-SVM), adaptive neuro-fuzzy inference systems, and artificial neural networks. The LS-SVM was finally detected as the most accurate paradigm for the considered purpose. Methanol loss estimation by the LS-SVM model is in excellent agreement with 196 real-field datasets in the literature, i.e., AARD = 0.295% and R2 = 0.9999. An economic study shows that methanol loss may impose more than 132 million US Dollars per year to a gas plant that processes 674 million standard cubic meters of gas per day.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Methanol mass in one million standard cubic meters of gas/weight percent of methanol in aqueous phase.

References

  1. Abedini, M.; Mutalib, A.A.; Zhang, C.; Mehrmashhadi, J.; Raman, S.N.; Alipour, R.; Momeni, T.; Mussa, M.H.: Large deflection behavior effect in reinforced concrete columns exposed to extreme dynamic loads. Front. Struct. Civ. Eng. 14, 532–553 (2020)

    Article  Google Scholar 

  2. Ahmadi, M.A.; Soleimani, R.; Bahadori, A.: Prediction of natural gas hydrate inhibitor vaporization rate using particle swarm optimization approach. Energy Sources, Part A Recover. Util. Environ. Eff. 38, 1706–1712 (2016)

  3. Bahadori, A.; Vuthaluru, H.B.: Prediction of methanol loss in vapor phase during gas hydrate inhibition using Arrhenius-type functions. J. loss Prev. Process Ind. 23, 379–384 (2010)

    Article  Google Scholar 

  4. Bahadori, A.; Vuthaluru, H.B.: Predictive tool for the estimation of methanol loss in condensate phase during gas hydrate inhibition. Energy Fuels 24, 2999–3002 (2010)

    Article  Google Scholar 

  5. Bahadori, A.; Vuthaluru, H.B.; Mokhatab, S.; Tade, M.O.: Predicting hydrate forming pressure of pure alkanes in the presence of inhibitors. J. Nat. gas Chem. 17, 249–255 (2008)

    Article  Google Scholar 

  6. Chen, Y.; He, L.; Guan, Y.; Lu, H.; Li, J.: Life cycle assessment of greenhouse gas emissions and water-energy optimization for shale gas supply chain planning based on multi-level approach: case study in Barnett, Marcellus, Fayetteville, and Haynesville shales. Energy Convers. Manag. 134, 382–398 (2017)

    Article  Google Scholar 

  7. Chen, Y.; Li, J.; Lu, H.; Yan, P.: Coupling system dynamics analysis and risk aversion programming for optimizing the mixed noise-driven shale gas-water supply chains. J. Clean. Prod. 278, 123209 (2021)

    Article  Google Scholar 

  8. Cheng, X.; He, L.; Lu, H.; Chen, Y.; Ren, L.: Optimal water resources management and system benefit for the Marcellus shale-gas reservoir in Pennsylvania and West Virginia. J. Hydrol. 540, 412–422 (2016)

    Article  Google Scholar 

  9. Cox, S.J.; Taylor, D.J.F.; Youngs, T.G.A.; Soper, A.K.; Totton, T.S.; Chapman, R.G.; Arjmandi, M.; Hodges, M.G.; Skipper, N.T.; Michaelides, A.: Formation of methane hydrate in the presence of natural and synthetic nanoparticles. J. Am. Chem. Soc. 140, 3277–3284 (2018)

    Article  Google Scholar 

  10. Daryayehsalameh, B.; Nabavi, M.; Vaferi, B.: Modeling of CO2 capture ability of [Bmim][BF4] ionic liquid using connectionist smart paradigms. Environ. Technol. Innov. 101484 (2021)

  11. Davoudi, E.; Vaferi, B.: Applying artificial neural networks for systematic estimation of degree of fouling in heat exchangers. Chem. Eng. Res. Des. 130, 138–153 (2018)

    Article  Google Scholar 

  12. Esteban, A.; Hernandez, V.; Lunsford, K.: Exploit the benefits of methanol. In: Proceedings of the 79th Gas Processors Association Annual Convention (GPA’00). Citeseer (2000)

  13. GPSA: GPSA engineering data book. Gas Process. Assoc. Oklaoma. (2004)

  14. Ghiasi, M.M.; Arabloo, M.; Bahadori, A.; Zendehboudi, S.: Prediction of methanol loss in liquid hydrocarbon phase during natural gas hydrate inhibition using rigorous models. J. Loss Prev. Process Ind. 33, 1–9 (2015)

    Article  Google Scholar 

  15. Ghiasi, M.M.; Bahadori, A.; Zendehboudi, S.; Jamili, A.; Rezaei-Gomari, S.: Novel methods predict equilibrium vapor methanol content during gas hydrate inhibition. J. Nat. Gas Sci. Eng. 15, 69–75 (2013)

    Article  Google Scholar 

  16. Haghighi, A.; Shadloo, M.S.; Maleki, A.; Abdollahzadeh Jamalabadi, M.Y.: Using committee neural network for prediction of pressure drop in two-phase microchannels. Appl. Sci. 10, 5384 (2020)

    Article  Google Scholar 

  17. Hammerschmidt, E.G.: Formation of gas hydrates in natural gas transmission lines. Ind. Eng. Chem. 26, 851–855 (1934)

    Article  Google Scholar 

  18. Hammerschmidt, E.G.: Gas hydrate formations, A further study on their prevention and elimination from natural gas pipe lines. Gas. 15, 30–34 (1939)

    Google Scholar 

  19. Hassanpour, M.; Vaferi, B.; Masoumi, M.E.: Estimation of pool boiling heat transfer coefficient of alumina water-based nanofluids by various artificial intelligence (AI) approaches. Appl. Therm. Eng. 128, (2018)

  20. He, L.; Chen, Y.; Zhao, H.; Tian, P.; Xue, Y.; Chen, L.: Game-based analysis of energy-water nexus for identifying environmental impacts during Shale gas operations under stochastic input. Sci. Total Environ. 627, 1585–1601 (2018)

    Article  Google Scholar 

  21. He, S.; Guo, F.; Zou, Q.; Ding, H.: MRMD2.0: A Python Tool for Machine Learning with Feature Ranking and Reduction. Curr. Bioinform. 15, 1–9 (2020)

  22. Iraci, L.T.; Essin, A.M.; Golden, D.M.: Solubility of methanol in low-temperature aqueous sulfuric acid and implications for atmospheric particle composition. J. Phys. Chem. A. 106, 4054–4060 (2002)

    Article  Google Scholar 

  23. Jacomel, F.C.; Sirino, T.H.; Marcelino Neto, M.A.; Bertoldi, D.; Morales, R.E.M.: Loss of Methanol and Monoethylene Glycol in VLE and LLE: Prediction of Hydrate Inhibitor Partition. J. Chem. Eng. Data. 64, 3889–3903 (2019)

  24. Jiang, Q.; Shao, F.; Gao, W.; Chen, Z.; Jiang, G.; Ho, Y.-S.: Unified no-reference quality assessment of singly and multiply distorted stereoscopic images. IEEE Trans. Image Process. 28, 1866–1881 (2018)

    Article  MathSciNet  Google Scholar 

  25. Kou, G.; Chao, X.; Peng, Y.; Alsaadi, F.E.; Herrera-Viedma, E.: Machine learning methods for systemic risk analysis in financial sectors. Technol. Econ. Dev. Econ. 25, 716–742 (2019)

    Article  Google Scholar 

  26. Kou, G.; Lu, Y.; Peng, Y.; Shi, Y.: Evaluation of classification algorithms using MCDM and rank correlation. Int. J. Inf. Technol. Decis. Mak. 11, 197–225 (2012)

    Article  Google Scholar 

  27. Kou, G.; Peng, Y.; Wang, G.: Evaluation of clustering algorithms for financial risk analysis using MCDM methods. Inf. Sci. (Ny) 275, 1–12 (2014)

    Article  Google Scholar 

  28. Lashkarbolooki, M.; Vaferi, B.; Rahimpour, M.R.: Comparison the capability of artificial neural network (ANN) and EOS for prediction of solid solubilities in supercritical carbon dioxide. Fluid Phase Equilib. 308, (2011)

  29. Li, T.; Kou, G.; Peng, Y.: Improving malicious URLs detection via feature engineering: linear and nonlinear space transformation methods. Inf. Syst. 91, 101494 (2020)

    Article  Google Scholar 

  30. Li, T.; Xu, M.; Zhu, C.; Yang, R.; Wang, Z.; Guan, Z.: A deep learning approach for multi-frame in-loop filter of HEVC. IEEE Trans. Image Process. 28, 5663–5678 (2019)

    Article  MathSciNet  Google Scholar 

  31. Li, T.; Kou, G.; Peng, Y.; Shi, Y.: Classifying with adaptive hyper-spheres: An incremental classifier based on competitive learning. IEEE Trans. Syst. man, Cybern. Syst. 50, 1218–1229 (2017)

  32. Liu, J.; Liu, Y.; Wang, X.: An environmental assessment model of construction and demolition waste based on system dynamics: a case study in Guangzhou. Environ. Sci. Pollut. Res. 27, 37237–37259 (2020)

    Article  Google Scholar 

  33. Liu, S.; Yu, W.; Chan, F.T.S.; Niu, B.: A variable weight-based hybrid approach for multi-attribute group decision making under interval-valued intuitionistic fuzzy sets. Int. J. Intell. Syst. 36, 1015–1052 (2021)

    Article  Google Scholar 

  34. Ma, H.-J.; Xu, L.-X.; Yang, G.-H.: Multiple environment integral reinforcement learning-based fault-tolerant control for affine nonlinear systems. IEEE Trans, Cybern (2019)

    Google Scholar 

  35. Mahmoodi, F.; Darvishi, P.; Vaferi, B.: Prediction of coefficients of the Langmuir adsorption isotherm using various artificial intelligence (AI) techniques. J. Iran. Chem. Soc. 15, 2747–2757 (2018)

    Article  Google Scholar 

  36. Methanol price and supply/demand. Available from: https://www.methanol.org/methanol-price-supply-demand (March 20, 2021)

  37. Moayedi, H.; Aghel, B.; Vaferi, B.; Foong, L.K.; Bui, D.T.: The feasibility of Levenberg–Marquardt algorithm combined with imperialist competitive computational method predicting drag reduction in crude oil pipelines. J. Pet. Sci. Eng. 185, (2020). https://doi.org/https://doi.org/10.1016/j.petrol.2019.106634

  38. Moeini, H.; Bonyadi, M.; Esmaeilzadeh, F.; Rasoolzadeh, A.: Experimental study of sodium chloride aqueous solution effect on the kinetic parameters of carbon dioxide hydrate formation in the presence/absence of magnetic field. J. Nat. Gas Sci. Eng. 50, 231–239 (2018)

    Article  Google Scholar 

  39. Ng, H.J.; Robinson, D.B.: The solubility of methanol or glycol in water-hydrocarbon systems. Gas Proc. Assn. Rsch. Rpt. 117, (1988)

  40. Ng, H.-J.; Chen, C.-J.: Vapour-liquid and Vapour-liquid-liquid Equilibria for H? S, CO?, Selected Light Hydrocarbons and a Gas Condensate in Aqueous Methanol Or Ethylene Glycol Solutions: GPA Project 905. Gas Processors Association (1995)

  41. Paz, P.; Netto, T.A.: On the rheological properties of thermodynamic hydrate inhibitors used in offshore oil and gas production. J. Mar. Sci. Eng. 8, 878 (2020)

    Article  Google Scholar 

  42. Rasoolzadeh, A.; Shariati, A.: Considering double occupancy of large cages in nitrogen and oxygen hydrates at high pressures. Fluid Phase Equilib. 434, 107–116 (2017)

    Article  Google Scholar 

  43. Rasoolzadeh, A.; Shariati, A.: Hydrogen hydrate cage occupancy: A key parameter for hydrogen storage and transport. Fluid Phase Equilib. 494, 8–20 (2019)

    Article  Google Scholar 

  44. Shadloo, M.S.: Application of support vector machines for accurate prediction of convection heat transfer coefficient of nanofluids through circular pipes. Int. J. Numer, Methods Heat Fluid Flow (2020)

    Google Scholar 

  45. Shen, F.; Zhao, X.; Kou, G.: Three-stage reject inference learning framework for credit scoring using unsupervised transfer learning and three-way decision theory. Decis. Support Syst. 137, 113366 (2020)

    Article  Google Scholar 

  46. Suykens, J.A.K.; Van Gestel, T.; De Brabanter, J.; De Moor, B.; Vandewalle, J.: Least squares support vector machines.,(World Scientific Publishing: Singapore). (2002)

  47. Teixeira, A.M.; de Oliveira Arinelli, L.; de Medeiros, J.L.; Ofélia de Queiroz, F.A.: Recovery of thermodynamic hydrate inhibitors methanol, ethanol and MEG with supersonic separators in offshore natural gas processing. J. Nat. Gas Sci. Eng. 52, 166–186 (2018)

  48. Vaferi, B.: Prediction of methanol loss by hydrocarbon gas phase in hydrate inhibition unit by back propagation neural networks. J. Chem. Pet. Eng. 53, 253–264 (2019)

    Google Scholar 

  49. Vaferi, B.; Eslamloueyan, R.: Hydrocarbon reservoirs characterization by co-interpretation of pressure and flow rate data of the multi-rate well testing. J. Pet. Sci. Eng. 135, 59–72 (2015)

    Article  Google Scholar 

  50. Xu, M.; Li, T.; Wang, Z.; Deng, X.; Yang, R.; Guan, Z.: Reducing complexity of HEVC: a deep learning approach. IEEE Trans. Image Process. 27, 5044–5059 (2018)

    Article  MathSciNet  Google Scholar 

  51. Yan, D.; Zheng, Y.; Wang, W.; Chen, Q.: Modeling and dynamic analyses of the bulb turbine blade with crack fault. Appl. Math. Model. 89, 731–751 (2021)

    Article  Google Scholar 

  52. Yang, W.; Zhao, Y.; Wang, D.; Wu, H.; Lin, A.; He, L.: Using principal components analysis and IDW interpolation to determine spatial and temporal changes of surface water quality of Xin’anjiang River in Huangshan, China. Int. J. Environ. Res. Public Health. 17, 2942 (2020)

    Article  Google Scholar 

  53. Yang, J.; Li, S.; Wang, Z.; Dong, H.; Wang, J.; Tang, S.: Using Deep Learning to Detect Defects in Manufacturing: A Comprehensive Survey and Current Challenges. Materials (Basel). 13, 5755 (2020)

  54. Yousefinejad, S.; Eftekhari, R.; Honarasa, F.; Zamanian, Z.; Sedaghati, F.: Comparison between the gas-liquid solubility of methanol and ethanol in different organic phases using structural properties of solvents. J. Mol. Liq. 241, 861–869 (2017)

    Article  Google Scholar 

  55. Zamani, H.A.; Rafiee-Taghanaki, S.; Karimi, M.; Arabloo, M.; Dadashi, A.: Implementing ANFIS for prediction of reservoir oil solution gas-oil ratio. J. Nat. Gas Sci. Eng. 25, 325–334 (2015)

    Article  Google Scholar 

  56. Zhang, K.; Zhang, J.; Ma, X.; Yao, C.; Zhang, L.; Yang, Y.; Wang, J.; Yao, J.; Zhao, H.: History Matching of Naturally Fractured Reservoirs Using a Deep Sparse Autoencoder. SPE J. 1–22 (2021)

  57. Zheng, Y.; Shadloo, M.S.; Nasiri, H.; Maleki, A.; Karimipour, A.; Tlili, I.: prediction of viscosity of biodiesel blends using various artificial model and comparison with empirical correlations. Renew. Energy. (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saleh Hosseini or Behzad Vaferi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, S., Vaferi, B. Determination of Methanol Loss Due to Vaporization in Gas Hydrate Inhibition Process Using Intelligent Connectionist Paradigms. Arab J Sci Eng 47, 5811–5819 (2022). https://doi.org/10.1007/s13369-021-05679-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05679-4

Keywords

Navigation