Skip to main content
Log in

Nitrogen-Enhanced Charge Transfer Efficacy on the Carbon Sheet: A Theoretical Insight Into the Adsorption of Anionic Dyes

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Dye removal over the surface of activated carbon is a well-established approach for the treatment of wastewater effluents from pharmaceutical, food, and textile industries. Tuning the surface chemistry of the adsorbent plays a vital role in improving the dye adsorption performance. Herein, we report the mechanistic insights from first-principles calculations on the removal of common anionic dyes using nitrogen-enriched carbon sheets. The adsorption characteristics and chemical reactivity patterns of methyl blue, methyl orange, and methyl red were thoroughly accounted for based on their computed reactivity descriptors, adsorption energies, and structural and electronic properties. Nitrogen enrichment of the carbon sheet resulted in the significant decrease in the energy gap and global hardness values, suggesting an improvement in charge transfer efficacy and dye adsorption capacity. Among the three dyes investigated, methyl blue exhibited the lowest energy gap of 0.960 and 1.064 eV and the global hardness of 0.480 and 0.532 eV at the B3LYP/6-31G(d) and the B3LYP/6-311G(d,p) levels of theory, respectively, displaying a higher electrostatic attraction toward nitrogen-enriched carbon sheets in accordance with the hard-soft acid–base principle. Predicted adsorption energies of 28.69, 13.18, and 16.90 kcal/mol at 6-31G(d); and 28.91, 12.08, and 16.88 kcal/mol at 6-311G(d,p) basis sets were obtained for methyl blue, methyl orange, and methyl red, respectively, suggesting the selectivity of the nitrogen-enriched carbon sheet to the methyl blue dye. Further, the protonation of the nitrogen-enriched carbon sheets would tune the selectivity of the adsorbent resulting in a significant enhancement of the electrostatic attraction, in line with the experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to time limitations and will be made available by the corresponding author upon request.

References

  1. Yang, X.; Li, Y.; Du, Q.; Sun, J.; Chen, L.; Hu, S.; Wang, Z.; Xia, Y.; Xia, L.: Highly effective removal of basic fuchsin from aqueous solutions by anionic polyacrylamide/graphene oxide aerogels. J. Colloid Interface Sci. 453, 107–114 (2015). https://doi.org/10.1016/j.jcis.2015.04.042

    Article  Google Scholar 

  2. Khamis, S.N.; Moustafa, A.F.; Aboud, A.A.; Halim, K.S.A.: Effective utilization of Moringa seeds waste as a new green environmental adsorbent for removal of industrial toxic dyes. J. Mater. Res. Technol. 8, 1798–1808 (2019). https://doi.org/10.1016/j.jmrt.2018.12.010

    Article  Google Scholar 

  3. Li, W.; Mu, B.; Yang, Y.: Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology. Bioresour. Technol. 277, 157–170 (2019). https://doi.org/10.1016/j.biortech.2019.01.002

    Article  Google Scholar 

  4. Mittal, A.; Malviya, A.; Kaur, D.; Mittal, J.; Kurup, L.: Studies on the adsorption kinetics and isotherms for the removal and recovery of Methyl Orange from wastewaters using waste materials. J. Hazard. Mater. 148, 229–240 (2007). https://doi.org/10.1016/j.jhazmat.2007.02.028

    Article  Google Scholar 

  5. Hynes, N.R.J.; Kumar, J.S.; Kamyab, H.; Sujana, J.A.J.; Al-Khashman, O.A.; Kuslu, Y.; Ene, A.; Suresh Kumar, B.: Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector—a comprehensive review. J. Clean. Prod. 272, 122636 (2020). https://doi.org/10.1016/j.jclepro.2020.122636

    Article  Google Scholar 

  6. Routoula, E.; Patwardhan, S.V.: Degradation of anthraquinone dyes from effluents: a review focusing on enzymatic dye degradation with industrial potential. Environ. Sci. Technol. 54, 647–664 (2020). https://doi.org/10.1021/acs.est.9b03737

    Article  Google Scholar 

  7. Chen, S.; Zhang, J.; Zhang, C.; Yue, Q.; Li, Y.; Li, C.: Equilibrium and kinetic studies of methyl orange and methyl violet adsorption on activated carbon derived from Phragmites australis. Desalination 252, 149–156 (2010). https://doi.org/10.1016/j.desal.2009.10.010

    Article  Google Scholar 

  8. Li, D.; Seaman, J.C.; Hunyadi Murph, S.E.; Kaplan, D.I.; Taylor-Pashow, K.; Feng, R.; Chang, H.; Tandukar, M.: Porous iron material for TcO4- and ReO4- sequestration from groundwater under ambient oxic conditions. J. Hazard. Mater. 374, 177–185 (2019). https://doi.org/10.1016/j.jhazmat.2019.04.030

    Article  Google Scholar 

  9. Nasar, A.; Mashkoor, F.: Application of polyaniline-based adsorbents for dye removal from water and wastewater—a review. Environ. Sci. Pollut. Res. 26, 5333–5356 (2019). https://doi.org/10.1007/s11356-018-3990-y

    Article  Google Scholar 

  10. Dadashi Firouzjaei, M.; Akbari Afkhami, F.; Rabbani Esfahani, M.; Turner, C.H.; Nejati, S.: Experimental and molecular dynamics study on dye removal from water by a graphene oxide-copper-metal organic framework nanocomposite. J. Water Process Eng. 34, 101180 (2020). https://doi.org/10.1016/j.jwpe.2020.101180

    Article  Google Scholar 

  11. Zhao, W.; Tang, Y.; Xi, J.; Kong, J.: Functionalized graphene sheets with poly(ionic liquid)s and high adsorption capacity of anionic dyes. Appl. Surf. Sci. 326, 276–284 (2015). https://doi.org/10.1016/j.apsusc.2014.11.069

    Article  Google Scholar 

  12. Xu, D.; Cheng, B.; Cao, S.; Yu, J.: Enhanced photocatalytic activity and stability of Z-scheme Ag2CrO4-GO composite photocatalysts for organic pollutant degradation. Appl. Catal. B Environ. 164, 380–388 (2015). https://doi.org/10.1016/j.apcatb.2014.09.051

    Article  Google Scholar 

  13. Lin, J.; Ye, W.; Zeng, H.; Yang, H.; Shen, J.; Darvishmanesh, S.; Luis, P.; Sotto, A.; Van der Bruggen, B.: Fractionation of direct dyes and salts in aqueous solution using loose nanofiltration membranes. J. Memb. Sci. 477, 183–193 (2015). https://doi.org/10.1016/j.memsci.2014.12.008

    Article  Google Scholar 

  14. Manenti, D.R.; Módenes, A.N.; Soares, P.A.; Espinoza-Quiñones, F.R.; Boaventura, R.A.R.; Bergamasco, R.; Vilar, V.J.P.: Assessment of a multistage system based on electrocoagulation, solar photo-Fenton and biological oxidation processes for real textile wastewater treatment. Chem. Eng. J. 252, 120–130 (2014). https://doi.org/10.1016/j.cej.2014.04.096

    Article  Google Scholar 

  15. Liang, C.Z.; Sun, S.P.; Li, F.Y.; Ong, Y.K.; Chung, T.S.: Treatment of highly concentrated wastewater containing multiple synthetic dyes by a combined process of coagulation/flocculation and nanofiltration. J. Memb. Sci. 469, 306–315 (2014). https://doi.org/10.1016/j.memsci.2014.06.057

    Article  Google Scholar 

  16. Labanda, J.; Sabaté, J.; Llorens, J.: Experimental and modeling study of the adsorption of single and binary dye solutions with an ion-exchange membrane adsorber. Chem. Eng. J. 166, 536–543 (2011). https://doi.org/10.1016/j.cej.2010.11.013

    Article  Google Scholar 

  17. Zhao, G.; Jiang, L.; He, Y.; Li, J.; Dong, H.; Wang, X.; Hu, W.: Sulfonated graphene for persistent aromatic pollutant management. Adv Mater 23(3959), 3963 (2011). https://doi.org/10.1002/adma.201101007

    Article  Google Scholar 

  18. Hussain, I.; Li, Y.; Qi, J.; Li, J.; Wang, L.: Nitrogen-enriched carbon sheet for Methyl blue dye adsorption. J. Environ. Manage. 215, 123–131 (2018). https://doi.org/10.1016/j.jenvman.2018.03.051

    Article  Google Scholar 

  19. Smith, S.C.; Rodrigues, D.F.: Carbon-based nanomaterials for removal of chemical and biological contaminants from water: a review of mechanisms and applications. Carbon 91, 122–143 (2015)

    Article  Google Scholar 

  20. Pereira, M.F.R.; Soares, S.F.; Órfão, J.J.M.; Figueiredo, J.L.: Adsorption of dyes on activated carbons: influence of surface chemical groups. Carbon N. Y. 41, 811–821 (2003). https://doi.org/10.1016/S0008-6223(02)00406-2

    Article  Google Scholar 

  21. Dong, X.; Fu, J.; Xiong, X.; Chen, C.: Preparation of hydrophilic mesoporous carbon and its application in dye adsorption. Mater. Lett. 65, 2486–2488 (2011). https://doi.org/10.1016/j.matlet.2011.05.014

    Article  Google Scholar 

  22. He, Y.; Zhuang, X.; Lei, C.; Lei, L.; Hou, Y.; Mai, Y.; Feng, X.: Porous carbon nanosheets: synthetic strategies and electrochemical energy related applications. Nano Today 24, 103–119 (2019). https://doi.org/10.1016/j.nantod.2018.12.004

    Article  Google Scholar 

  23. Li, Y.; Yu, H.; Yang, Y.; Dong, X.: Fabrication of 3D ordered mesoporous ball-flower structures ZnO material with the excellent gas sensitive property. Sensors Actuators B Chem. 300, 127050 (2019). https://doi.org/10.1016/j.snb.2019.127050

    Article  Google Scholar 

  24. Liu, Y.; Cui, G.; Luo, C.; Zhang, L.; Guo, Y.; Yan, S.: Synthesis, characterization and application of amino-functionalized multi-walled carbon nanotubes for effective fast removal of methyl orange from aqueous solution. RSC Adv. 4, 55162–55172 (2014). https://doi.org/10.1039/C4RA10047F

    Article  Google Scholar 

  25. Sánchez-Sánchez, A.; Suárez-García, F.; Martínez-Alonso, A.; Tascón, J.M.D.: Synthesis, characterization and dye removal capacities of N-doped mesoporous carbons. J. Colloid Interface Sci. 450, 91–100 (2015). https://doi.org/10.1016/j.jcis.2015.02.073

    Article  Google Scholar 

  26. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H.: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344

    Article  Google Scholar 

  27. Grimme, S.; Ehrlich, S.; Goerigk, L.: Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011). https://doi.org/10.1002/jcc.21759

    Article  Google Scholar 

  28. Tomasi, J.; Mennucci, B.; Cammi, R.: Quantum mechanical continuum solvation models. Chem. Rev. 105, 2999–3094 (2005). https://doi.org/10.1021/cr9904009

    Article  Google Scholar 

  29. Pearson, R.G.: Absolute electronegativity and hardness: application to inorganic chemistry. Inorg. Chem. 27, 734–740 (2002). https://doi.org/10.1021/ic00277a030

    Article  Google Scholar 

  30. Mousavi, M.; Mohammadalizadeh, M.; Khosravan, A.: Theoretical investigation of corrosion inhibition effect of imidazole and its derivatives on mild steel using cluster model. Corros. Sci. 53, 3086–3091 (2011). https://doi.org/10.1016/j.corsci.2011.05.034

    Article  Google Scholar 

  31. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B.G.; Gomperts, R.; Mennucci, B.; Hratchian, H.P.; Ort, J. V.; Fox, D.J.: Gaussian 09, Revision D.02, https://gaussian.com/g09citation/ (2016)

  32. Dennington, R.; Keith, T.; Millam, J.: Gauss View (2009)

  33. Obot, I.B.; Obi-Egbedi, N.O.: Theoretical study of benzimidazole and its derivatives and their potential activity as corrosion inhibitors. Corros. Sci. 52, 657–660 (2010). https://doi.org/10.1016/j.corsci.2009.10.017

    Article  Google Scholar 

  34. DeSouza, T.N.V.; DeCarvalho, S.M.L.; Vieira, M.G.A.; DaSilva, M.G.C., et al.: Adsorption of basic dyes onto activated carbon: Experimental and theoretical investigation of chemical reactivity of basic dyes using DFT-based descriptors. Appl. Surf. Sci. 448, 662–670 (2018). https://doi.org/10.1016/j.apsusc.2018.04.087

    Article  Google Scholar 

  35. Abdulazeez, I.; Khaled, M.; Al-Saadi, A.A.: Impact of electron-withdrawing and electron-donating substituents on the corrosion inhibitive properties of benzimidazole derivatives: a quantum chemical study. J. Mol. Struct. 1196, 348–355 (2019). https://doi.org/10.1016/j.molstruc.2019.06.082

    Article  Google Scholar 

  36. Wang, H.; Wang, X.; Wang, H.; Wang, L.; Liu, A.: DFT study of new bipyrazole derivatives and their potential activity as corrosion inhibitors. J. Mol. Model. 13, 147–153 (2007). https://doi.org/10.1007/s00894-006-0135-x

    Article  Google Scholar 

  37. Chattaraj, P.K.; Lee, H.; Parr, R.G.: HSAB principle. J. Am. Chem. Soc. 113, 1855–1856 (2002). https://doi.org/10.1021/ja00005a073

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge the King Fahd University of Petroleum and Minerals (KFUPM) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulaziz A. Al-Saadi.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2047 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umar, M., Nnadiekwe, C.C., Abdulazeez, I. et al. Nitrogen-Enhanced Charge Transfer Efficacy on the Carbon Sheet: A Theoretical Insight Into the Adsorption of Anionic Dyes. Arab J Sci Eng 47, 419–427 (2022). https://doi.org/10.1007/s13369-021-05648-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05648-x

Keywords

Navigation