Skip to main content
Log in

An improved faster-RCNN model for handwritten character recognition

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Existing techniques for hand-written digit recognition (HDR) rely heavily on the hand-coded key points and requires prior knowledge. Training an efficient HDR network with these preconditions is a complicated task. Recently, work on HDR is mainly focused on deep learning (DL) approaches and has exhibited remarkable results. However, effective detection and classification of numerals is still a challenging task due to people’s varying writing styles and the presence of blurring, distortion, light and size variations in the input sample. To cope with these limitations, we present an effective and efficient HDR system, introducing a customized faster regional convolutional neural network (Faster-RCNN). This approach comprises three main steps. Initially, we develop annotations to obtain the region of interest. Then, an improved Faster-RCNN is employed in which DenseNet-41 is introduced to compute the deep features. Finally, the regressor and classification layer is used to localize and classify the digits into ten classes. The performance of the proposed method is analyzed on the standard MNIST database, which is diverse in terms of changes in lighting conditions, chrominance, shape and size of digits, and the occurrence of blurring and noise effects, etc. Additionally, we have also evaluated our technique over a cross-dataset scenario to prove its efficacy. Experimental evaluations demonstrate that the approach is more competent and able to accurately detect and classify numerals than other recent methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  2. Al-wajih, E.; Ghazali, R.; Hassim, Y.M.M.: Residual neural network vs local binary convolutional neural networks for bilingual handwritten digit recognition. In: International Conference on Soft Computing and Data Mining, pp. 25–34. Springer (2020)

  3. Abdulrazzaq, M.B.; Saeed, J.N.: A comparison of three classification algorithms for handwritten digit recognition. In: 2019 International Conference on Advanced Science and Engineering (ICOASE), pp. 58–63. IEEE (2019)

  4. Shamim, S.; Miah, M.B.A.; Angona Sarker, M.R.; Al Jobair, A.: Handwritten digit recognition using machine learning algorithms. Global J. Comput. Sci. Technol. 18(1), 1–8 (2018)

  5. Abualigah, L.M.Q.: Feature Selection and Enhanced Krill Herd Algorithm for Text Document Clustering. Springer, Berlin (2019)

    Book  Google Scholar 

  6. Abualigah, L.M.; Khader, A.T.; Hanandeh, E.S.: Hybrid clustering analysis using improved krill herd algorithm. Appl. Intell. 48(11), 4047–4071 (2018)

    Article  Google Scholar 

  7. Abualigah, L.M.; Khader, A.T.; Hanandeh, E.S.: A new feature selection method to improve the document clustering using particle swarm optimization algorithm. J. Comput. Sci. 25, 456–466 (2018)

    Article  Google Scholar 

  8. Lauer, F.; Suen, C.Y.; Bloch, G.: A trainable feature extractor for handwritten digit recognition. Pattern Recogn. 40(6), 1816–1824 (2007)

    Article  MATH  Google Scholar 

  9. Niu, X.-X.; Suen, C.Y.: A novel hybrid CNN–SVM classifier for recognizing handwritten digits. Pattern Recogn. 45(4), 1318–1325 (2012)

    Article  Google Scholar 

  10. Goltsev, A.; Gritsenko, V.: Investigation of efficient features for image recognition by neural networks. Neural Netw. 28, 15–23 (2012)

    Article  Google Scholar 

  11. Kang, M.; Palmer-Brown, D.: A modal learning adaptive function neural network applied to handwritten digit recognition. Inf. Sci. 178(20), 3802–3812 (2008)

    Article  Google Scholar 

  12. Larochelle, H.; Bengio, Y.; Louradour, J.; Lamblin, P.: Exploring strategies for training deep neural networks. J. Mach. Learn. Res. 10(1), 1–40 (2009)

  13. Wang, Y.; Wang, X.; Liu, W.: Unsupervised local deep feature for image recognition. Inf. Sci. 351, 67–75 (2016)

    Article  Google Scholar 

  14. Verma, R.; Kaur, R.: An efficient technique for character recognition using neural network & surf feature extraction. Int. J. Comput. Sci. Inf. Technol. 5(2), 1995–1997 (2014)

    Google Scholar 

  15. Verma, R.; Kaur, R.: Enhanced character recognition using surf feature and neural network technique. Int. J. Comput. Sci. Inf. Technol. 5, 5565–5570 (2014)

    Google Scholar 

  16. Mapari, S.; Dani, A.: Recognition of handwritten benzene structure with support vector machine and logistic regression a comparative study. In: The International Symposium on Intelligent Systems Technologies and Applications, pp. 147–159. Springer (2016)

  17. Hua, L.; Xu, W.; Wang, T.; Ma, R.; Xu, B.: Vehicle recognition using improved SIFT and multi-view model. J. Xi’an Jiaotong Univ. 4(47), 92–99 (2013)

    Google Scholar 

  18. Ahlawat, S.; Choudhary, A.: Hybrid CNN-SVM classifier for handwritten digit recognition. Proc. Comput. Sci. 167, 2554–2560 (2020)

    Article  Google Scholar 

  19. Fukushima, K.: Biological cybernetics neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36, 193–202 (1980)

    Article  MATH  Google Scholar 

  20. Schuster, M.; Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45(11), 2673–2681 (1997)

    Article  Google Scholar 

  21. Hinton, G.E.: Deep belief networks. Scholarpedia 4(5), 5947 (2009)

    Article  Google Scholar 

  22. Salakhutdinov, R.; Hinton, G.: Deep boltzmann machines. In: Artificial intelligence and statistics, pp. 448–455 (2009)

  23. Christian Szegedy, W.L.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.: Googlenet: going deeper with convolutions. Comput. Vis. Pattern Recognit. 1(1), 1–9

  24. Krizhevsky, A.; Sutskever, I.; Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

  25. Simonyan, K.; Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv (2014)

  26. Targ, S.; Almeida, D.; Lyman, K.: Resnet in resnet: generalizing residual architectures. arXiv preprint arXiv:.08029 (2016)

  27. Ahlawat, S.; Choudhary, A.; Nayyar, A.; Singh, S.; Yoon, B.: Improved handwritten digit recognition using convolutional neural networks (CNN). Sensors 20(12), 3344 (2020)

    Article  Google Scholar 

  28. Deng, L.: The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process. Mag. 29(6), 141–142 (2012)

    Article  Google Scholar 

  29. Jarrett, K.; Kavukcuoglu, K.; Ranzato, M.A.; LeCun, Y.: What is the best multi-stage architecture for object recognition? In: 2009 IEEE 12th international conference on computer vision, pp. 2146–2153: IEEE (2009)

  30. Cireşan, D.C.; Meier, U.; Masci, J.; Gambardella, L.M.; Schmidhuber, J.: High-performance neural networks for visual object classification. arXiv preprint arXiv (2011)

  31. Ciregan, D.; Meier, U.; Schmidhuber, J.: Multi-column deep neural networks for image classification. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3642–3649. IEEE (2012)

  32. Qu, X.; Wang, W.; Lu, K.; Zhou, J.: Data augmentation and directional feature maps extraction for in-air handwritten Chinese character recognition based on convolutional neural network. Pattern Recogn. Lett. 111, 9–15 (2018)

    Article  Google Scholar 

  33. Graves, A.; Schmidhuber, J.: Offline handwriting recognition with multidimensional recurrent neural networks. In: Advances in Neural Information Processing Systems, pp. 545–552 (2009)

  34. Sayre, K.M.: Machine recognition of handwritten words: a project report. Pattern Recogn. 5(3), 213–228 (1973)

    Article  Google Scholar 

  35. Plamondon, R.; Srihari, S.N.: Online and off-line handwriting recognition: a comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 63–84 (2000)

    Article  Google Scholar 

  36. Yuan, A.; Bai, G.; Jiao, L.; Liu, Y.: Offline handwritten English character recognition based on convolutional neural network. In: 2012 10th IAPR International Workshop on Document Analysis Systems, pp. 125–129. IEEE (2012)

  37. Manisha, C.N.; Reddy, E.S.; Krishna, Y.: Role of offline handwritten character recognition system in various applications. Int. J. Comput. Appl. 135(2), 30–33 (2016)

    Google Scholar 

  38. Sánchez, J.A.; Bosch, V.; Romero, V.; Depuydt, K.; De Does, J.: Handwritten text recognition for historical documents in the transcriptorium project. In: Proceedings of the First International Conference on Digital Access to Textual Cultural Heritage, pp. 111–117 (2014)

  39. Plötz, T.; Fink, G.A.: Markov models for offline handwriting recognition: a survey. Int. J. Doc. Anal. Recogn. 12(4), 269 (2009)

    Article  Google Scholar 

  40. Choudhary, A.; Ahlawat, S.; Rishi, R.: A binarization feature extraction approach to OCR: MLP vs. RBF. In: International Conference on Distributed Computing and Internet Technology, pp. 341–346: Springer (2014)

  41. Choudhary, A.; Rishi, R.; Ahlawat, S.: Off-line handwritten character recognition using features extracted from binarization technique. Aasri Proc. 4, 306–312 (2013)

    Article  Google Scholar 

  42. Choudhary, A.; Rishi, R.: A fused feature extraction approach to OCR: MLP vs. RBF. In: ICT and Critical Infrastructure: Proceedings of the 48th Annual Convention of Computer Society of India, Vol I, pp. 159–166. Springer (2014)

  43. Cortes, C.; Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    Article  MATH  Google Scholar 

  44. Pontil, M.; Verri, A.: Support vector machines for 3D object recognition. IEEE Trans. Pattern Anal. Mach. Intell. 20(6), 637–646 (1998)

    Article  Google Scholar 

  45. Osuna, E.; Freund, R.; Girosit, F.: Training support vector machines: an application to face detection. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 130–136. IEEE (1997)

  46. Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2(2), 121–167 (1998)

    Article  Google Scholar 

  47. Guo, G.-D.; Jain, A.K.; Ma, W.-Y.; Zhang, H.-J.: Learning similarity measure for natural image retrieval with relevance feedback. IEEE Trans. Neural Netw 13(4), 811–820 (2002)

    Article  Google Scholar 

  48. Weston, J.A.E.: Extensions to the support vector method. Ph.D. Thesis, Citeseer (2000)

  49. Muller, K.-R.; Mika, S.; Ratsch, G.; Tsuda, K.; Scholkopf, B.: An introduction to kernel-based learning algorithms. IEEE Trans. Neural Netw. 12(2), 181–201 (2001)

    Article  Google Scholar 

  50. Boukharouba, A.; Bennia, A.: Novel feature extraction technique for the recognition of handwritten digits. Appl. Comput. Inf. 13(1), 19–26 (2017)

    Google Scholar 

  51. Iivarinen, J.; Visa, A.J.: Shape recognition of irregular objects. In: Intelligent Robots and Computer Vision XV: Algorithms, Techniques, Active Vision, and Materials Handling, vol. 2904, pp. 25–32. International Society for Optics and Photonics (1996)

  52. Choudhary, A.; Ahlawat, S.; Rishi, R.: A neural approach to cursive handwritten character recognition using features extracted from binarization technique. In: Complex System Modelling and Control Through Intelligent Soft Computations. Springer, pp. 745–771 (2015)

  53. Choudhary, A.; Rishi, R.; Ahlawat, S.: Handwritten numeral recognition using modified BP ANN structure. In: International Conference on Computer Science and Information Technology, pp. 56–65. Springer (2011)

  54. Cai, Z.-W.; Huang, L.-H.: Finite-time synchronization by switching state-feedback control for discontinuous Cohen–Grossberg neural networks with mixed delays. Int. J Mach. Learn. Cybern. 9(10), 1683–1695 (2018)

    Article  Google Scholar 

  55. Zeng, D.; Dai, Y.; Li, F.; Sherratt, R.S.; Wang, J.: Adversarial learning for distant supervised relation extraction. Comput. Mater. Continua 55(1), 121–136 (2018)

    Google Scholar 

  56. O’Shea, T.; Hoydis, J.: An introduction to deep learning for the physical layer. IEEE Trans. Cognit. Commun. Netw. 3(4), 563–575 (2017)

    Article  Google Scholar 

  57. Aceto, G.; Ciuonzo, D.; Montieri, A.; Pescapè, A.: MIMETIC: Mobile encrypted traffic classification using multimodal deep learning. Comput. Netw. 165, 106944 (2019)

    Article  Google Scholar 

  58. Aceto, G.; Ciuonzo, D.; Montieri, A.; Pescapé, A.: Toward effective mobile encrypted traffic classification through deep learning. Neurocomputing 409, 306–315 (2020)

    Article  Google Scholar 

  59. Hinton, G.E.; Osindero, S.; Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  60. Pham, V.; Bluche, T.; Kermorvant, C.; Louradour, J.: Dropout improves recurrent neural networks for handwriting recognition. In: 2014 14th International Conference on Frontiers in Handwriting Recognition, pp. 285–290. IEEE (2014)

  61. Wang, Y.; Wang, R.; Li, D.; Adu-Gyamfi, D.; Tian, K.; Zhu, Y.: Improved handwritten digit recognition using quantum K-nearest neighbor algorithm. Int. J. Theor. Phys. 58(7), 2331–2340 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  62. Arbain, N.A.; Azmi, M.S.; Muda, A.K.; Muda, N.A.; Radzid, A.R.: Offline handwritten digit recognition using triangle geometry properties. Int. J. Comput. Inf. Syst. Ind. Manag. Appl. 10, 87–97 (2018)

    Google Scholar 

  63. Azmi, M.S.; Omar, K.; Nasrudin, M.F.; Idrus, B.; Wan Mohd Ghazali, K.: Digit recognition for Arabic/Jawi and Roman using features from triangle geometry. In: AIP Conference Proceedings, vol. 1522(1), pp. 526–537. American Institute of Physics (2013)

  64. Assegie, T.A.; Nair, P.S.: Handwritten digits recognition with decision tree classification: a machine learning approach. Int. J. Electr. Comput. Eng. 9(5), 4446 (2019)

    Google Scholar 

  65. Kavitha, B.; Srimathi, C.: Benchmarking on offline handwritten tamil character recognition using convolutional neural networks. J. King Saud Univ. Comput. Inf. Sci. 1(1), 1–8 (2019)

  66. Boufenar, C.; Kerboua, A.; Batouche, M.: Investigation on deep learning for off-line handwritten Arabic character recognition. Cogn. Syst. Res. 50, 180–195 (2018)

    Article  Google Scholar 

  67. Dewan, S.; Chakravarthy, S.: A system for offline character recognition using auto-encoder networks. In: International Conference on Neural Information Processing, pp. 91–99. Springer (2012)

  68. Ahmed, S.B.; Naz, S.; Swati, S.; Razzak, M.I.: Handwritten Urdu character recognition using one-dimensional BLSTM classifier. Neural Computing Applications 31(4), 1143–1151 (2019)

    Article  Google Scholar 

  69. Wu, Y.-C.; Yin, F.; Liu, C.-L.: Improving handwritten Chinese text recognition using neural network language models and convolutional neural network shape models. Pattern Recogn. 65, 251–264 (2017)

    Article  Google Scholar 

  70. Tabik, S.; Alvear-Sandoval, R.F.; Ruiz, M.M.; Sancho-Gómez, J.-L.; Figueiras-Vidal, A. R.; Herrera, F.: MNIST-NET10: A heterogeneous deep networks fusion based on the degree of certainty to reach 0.1% error rate. Ensembles overview and proposal. Inf. Fus. 62(1), 73–80 (2020)

  71. Lang, G.; Li, Q.; Cai, M.; Yang, T.; Xiao, Q.: Incremental approaches to knowledge reduction based on characteristic matrices. Int. J. Mach. Learn. Cybern. 8(1), 203–222 (2017)

    Article  Google Scholar 

  72. Badrinarayanan, V.; Kendall, A.; Cipolla, R.: Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  73. P. Y. Simard, D. Steinkraus, and J. C. Platt. Best practices for convolutional neural networks applied to visual document analysis. In: Icdar 2003(3) (2003)

  74. Shi, B.; Bai, X.; Yao, C.: An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(11), 2298–2304 (2016)

    Article  Google Scholar 

  75. Hou, Y.; Zhao, H.: Handwritten digit recognition based on depth neural network. In: 2017 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), pp. 35–38. IEEE (2017)

  76. Ali, S.; Shaukat, Z.; Azeem, M.; Sakhawat, Z.; Mahmood, T.; ur Rehman, K.: An efficient and improved scheme for handwritten digit recognition based on convolutional neural network. SN Appl. Sci. 1(9), 1125 (2019)

    Article  Google Scholar 

  77. Aly, S.; Almotairi, S.: Deep convolutional self-organizing map network for robust handwritten digit recognition. IEEE Access (2020)

  78. Hafiz, A.M.; Bhat, G.M.: Reinforcement learning based handwritten digit recognition with two-state Q-learning. arXiv preprint arXiv:.01193 (2020)

  79. Watkins, C.J.; Dayan, P.: \cal Q-learning. Mach. Learn. 8(3–4), 279–292 (1992)

    Article  MATH  Google Scholar 

  80. Kulkarni, S.R.; Rajendran, B.: Spiking neural networks for handwritten digit recognition—supervised learning and network optimization. Neural Netw. 103, 118–127 (2018)

    Article  Google Scholar 

  81. Qiao, J.; Wang, G.; Li, W.; Chen, M.: An adaptive deep Q-learning strategy for handwritten digit recognition. Neural Netw. 107, 61–71 (2018)

    Article  MATH  Google Scholar 

  82. Cui, H.; Bai, J.: A new hyperparameters optimization method for convolutional neural networks. Pattern Recogn. Lett. 125, 828–834 (2019)

    Article  Google Scholar 

  83. Tso, W.W.; Burnak, B.; Pistikopoulos, E.N.: HY-POP: Hyperparameter optimization of machine learning models through parametric programming. Comput. Chem. Eng. 139, 106902 (2020)

    Article  Google Scholar 

  84. Siddique, F.; Sakib, S.; Siddique, M.A.B.: Recognition of handwritten digit using convolutional neural network in python with tensorflow and comparison of performance for various hidden layers. In: 2019 5th International Conference on Advances in Electrical Engineering (ICAEE), pp. 541–546. IEEE (2019)

  85. Wang, Y.; Li, H.; Jia, P.; Zhang, G.; Wang, T.; Hao, X.: Multi-scale DenseNets-based aircraft detection from remote sensing images. Sensors 19(23), 5270 (2019)

    Article  Google Scholar 

  86. Zhao, H.; Liu, H.: Algebraic fusion of multiple classifiers for handwritten digits recognition. In: 2018 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR), pp. 250–255: IEEE (2018)

  87. Zhao, H.-H.; Liu, H.: Multiple classifiers fusion and CNN feature extraction for handwritten digits recognition. Granul. Comput. 5(3), 411–418 (2020)

    Article  Google Scholar 

  88. Enriquez, E.A.; Gordillo, N.; Bergasa, L.M.; Romera, E.; Huélamo, C.G.: Convolutional neural network vs traditional methods for offline recognition of handwritten digits. In: Workshop of Physical Agents, pp. 87–99. Springer (2018)

  89. Ghosh, M.M.A.; Maghari, A.Y.: A comparative study on handwriting digit recognition using neural networks. In: 2017 international conference on promising electronic technologies (ICPET), pp. 77–81. IEEE (2017)

  90. Ge, D.-y.; Yao, X.-f.; Xiang, W.-j.; Wen, X.-j.; Liu, E.-c.: Design of high accuracy detector for MNIST handwritten digit recognition based on convolutional neural network. In: 2019 12th International Conference on Intelligent Computation Technology and Automation (ICICTA), pp. 658–662. IEEE (2019)

  91. Maji, S.; Malik, J.: Fast and accurate digit classification. EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS--159 (2009)

Download references

Acknowledgements

The authors would like to thank the Deanship of Scientific Research, Qassim University for covering publication of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Javed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albahli, S., Nawaz, M., Javed, A. et al. An improved faster-RCNN model for handwritten character recognition. Arab J Sci Eng 46, 8509–8523 (2021). https://doi.org/10.1007/s13369-021-05471-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05471-4

Keywords

Navigation