Skip to main content
Log in

Modeling of Congo Red Adsorption onto Multi-walled Carbon Nanotubes Using Response Surface Methodology: Kinetic, Isotherm and Thermodynamic Studies

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this present study, an adsorption process was investigated to removal of Congo Red (CR) dye from aqueous solutions by using multi-walled carbon nanotubes (MWCNTs) as an adsorbent. The physico-chemical properties of MWCNTs were characterized by TEM, SEM, Raman spectroscopy and BET surface area. The response surface methodology, which is including central composite design, was used to investigate the effects of four independent parameters (initial pH of solution (5.5–11.5), initial CR concentration (15–75 mg/L), MWCNTs amount (0.05–0.25 g/L) and contact time (20–60 min)). ANOVA evaluated with Design Expert 10.0 showed that a high value of regression coefficient (R2 = 0.988) a good agreement between experimental and model predicted response in addition to significance of the model. The optimum values of the independent variables giving the maximum removal efficiency (78.36%) of CR dye were obtained at the optimum adsorption conditions of initial solution pH: 5.5; initial CR concentration: 15 mg/L; MWCNTs dosage: 0.25 g/L and contact time: 59.62 min. The kinetic study illustrated that the experimental data are well defined with pseudo-second-order adsorption kinetic model. The maximum adsorption capacity (qmax) increased from 115.8 mg/g to 138.3 mg/g with the increase in temperature from 293 to 323 K. Thermodynamic parameters, ΔH (8.56 kJ/mol), ΔG (− 27.08 and − 30.73 kJ/mol) and ΔS (0.1215 kJ/mol K) were determined for the adsorption process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6
Fig. 7

Similar content being viewed by others

5. References

  1. Ali, I.; Jain, C.K.: Groundwater contamination and health hazards by some of the most commonly used pesticides. Curr. Sci. India 75, 1011–1014 (1998)

    Google Scholar 

  2. Basheer, A.: New generation nano-adsorbents for the removal of emerging contaminants in water. J. Mol. Liq. 261, 583–593 (2018)

    Google Scholar 

  3. Ali, I.; Basheer, A.; Mbianda, X.Y.; Burakov, A.; Galunin, E.; Burakova, I.; Mkrtchyan, E.; Tkachev, A.; Grachev, V.: Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environ. Int. 127, 160–180 (2019)

    Google Scholar 

  4. Yu, J.X.; Xiong, W.L.; Zhu, J.; Chen, J.D.; Chi, R.A.: Removal of Congo red from aqueous solution by adsorption onto different amine compounds modified sugarcane bagasse. Clean Technol. Environ. 19, 517–525 (2017)

    Google Scholar 

  5. Chen, H.; Zhao, J.: Adsorption study for removal of Congo red anionic dye using organo-attapulgite. Adsorption 15, 381–389 (2009)

    Google Scholar 

  6. Dulman, V.; Cucu-Man, S.M.: Sorption of some textile dyes by beech wood sawdust. J. Hazard Mater. 162, 1457–1464 (2009)

    Google Scholar 

  7. Ali, I.; Alharbi, O.M.L.; Alothman, Z.A.; Badjah, A.Y.: Kinetics, thermodynamics, and modeling of amido black dye photodegradation in water using Co/TiO2 nanoparticles. Photochem. Photobiol. 94, 935–941 (2018)

    Google Scholar 

  8. Mehrabi, M.; Javanbakht, V.: Photocatalytic degradation of cationic and anionic dyes by a novel nanophotocatalyst of TiO2/ZnTiO3/alpha Fe2O3 by ultraviolet light irradiation. J. Mater Sci. Mater El. 29, 9908–9919 (2018)

    Google Scholar 

  9. Lau, Y.Y.; Wong, Y.S.; Teng, T.T.; Morad, N.; Rafatullah, M.; Ong, S.A.: Coagulation-flocculation of azo dye acid orange 7 with green refined laterite soil. Chem. Eng. J. 246, 383–390 (2014)

    Google Scholar 

  10. Nikooe, N.; Saljoughi, E.: Preparation and characterization of novel PVDF nanofiltration membranes with hydrophilic property for filtration of dye aqueous solution. Appl. Surf. Sci. 413, 41–49 (2017)

    Google Scholar 

  11. Patel, Y.; Gupte, A.: Biological treatment of textile dyes by agar-agar immobilized consortium in a packed bed reactor. Water Environ. Res. 87, 242–251 (2015)

    Google Scholar 

  12. Cao, X.T.; Kim, D.W.; Showkat, A.M.; Jeong, Y.T.; Lim, K.T.: Enhancing adsorption of multi-walled carbon nanotubes for dye removal. Sci. Adv. Mater. 8, 322–326 (2016)

    Google Scholar 

  13. Manikandan, G.; Kumar, P.S.; Sarvanan, A.: Modelling and analysis on the removal of methylene blue dye from aqueous solution using physically/chemically modified Ceiba pentandra seeds. J. Ind. Eng. Chem. 62, 446–461 (2018)

    Google Scholar 

  14. Ali, I.: Microwave assisted economic synthesis of multi walled carbon nanotubes for arsenic species removal in water: batch and column operations. J. Mol. Liq. 271, 677–685 (2018)

    Google Scholar 

  15. Ali, I.; Burakov, A.E.; Melezhik, A.V.; Babkin, A.V.; Burakova, I.V.; Neskomornaya, E.A.; Galunin, E.V.; Tkachev, A.G.; Kuznetsov, D.V.: Removal of copper(II) and zinc(II) ions in water on a newly synthesized polyhydroquinone/graphene nanocomposite material: kinetics. Thermodyn. Mech. Chemistryselect 4, 12708–12718 (2019)

    Google Scholar 

  16. Tor, A.; Cengeloglu, Y.: Removal of congo red from aqueous solution by adsorption onto acid activated red mud. J. Hazard Mater. 138, 409–415 (2006)

    Google Scholar 

  17. Dawood, S.; Sen, T.K.; Phan, C.: Synthesis and characterisation of novel-activated carbon from waste biomass pine cone and its application in the removal of congo red dye from aqueous solution by adsorption. Water Air Soil. Pollut. 225, 1818 (2014)

    Google Scholar 

  18. Zhu, H.Y.; Fu, Y.Q.; Jiang, R.; Jiang, J.H.; Xiao, L.; Zeng, G.M.; Zhao, S.L.; Wang, Y.: Adsorption removal of congo red onto magnetic cellulose/Fe3O4/activated carbon composite: equilibrium, kinetic and thermodynamic studies. Chem. Eng. J. 173, 494–502 (2011)

    Google Scholar 

  19. Shu, J.X.; Wang, Z.H.; Huang, Y.J.; Huang, N.; Ren, C.G.; Zhang, W.: Adsorption removal of Congo red from aqueous solution by polyhedral Cu2O nanoparticles: kinetics, isotherms, thermodynamics and mechanism analysis. J. Alloy Compd. 633, 338–346 (2015)

    Google Scholar 

  20. Abbas, M.; Trari, M.: Kinetic, equilibrium and thermodynamic study on the removal of Congo Red from aqueous solutions by adsorption onto apricot stone. Process Saf. Environ. 98, 424–436 (2015)

    Google Scholar 

  21. Hu, M.Q.; Yan, X.L.; Hu, X.Y.; Zhang, J.J.; Feng, R.; Zhou, M.: Ultra-high adsorption capacity of MgO/SiO2 composites with rough surfaces for Congo red removal from water. J. Colloid Interf. Sci. 510, 111–117 (2018)

    Google Scholar 

  22. Kaur, S.; Rani, S.; Mahajan, R.K.: Adsorption kinetics for the removal of hazardous dye congo red by biowaste materials as adsorbents. J. Chem-Ny. (2013). https://doi.org/10.1155/2013/628582

    Article  Google Scholar 

  23. Ferreira, G.M.D.; Ferreira, G.M.D.; Hespanhol, M.C.; Rezende, J.D.; Pires, A.C.D.; Gurgel, L.V.A.; da Silva, L.H.M.: Adsorption of red azo dyes on multi-walled carbon nanotubes and activated carbon: a thermodynamic study. Colloid Surface A 529, 531–540 (2017)

    Google Scholar 

  24. Karimifard, S.; Moghaddam, M.R.A.: Removal of an anionic reactive dye from aqueous solution using functionalized multi-walled carbon nanotubes: isotherm and kinetic studies. Desalin. Water Treat. 57, 16643–16652 (2016)

    Google Scholar 

  25. Ali, I.; Alharbi, O.M.L.; ALOthman, Z.A.; Al-Mohaimeed, A.M.; Alwarthan, A.: Modeling of fenuron pesticide adsorption on CNTs for mechanistic insight and removal in water. Environ. Res. 170, 389–397 (2019)

    Google Scholar 

  26. Vuono, D.; Catizzone, E.; Aloise, A.; Policicchio, A.; Agostino, R.G.; Migliori, M.; Giordano, G.: Modelling of adsorption of textile dyes over multi-walled carbon nanotubes: equilibrium and kinetic. Chin. J. Chem. Eng. 25, 523–532 (2017)

    Google Scholar 

  27. Baghapour, M.A.; Pourfadakari, S.; Mahvi, A.H.: Investigation of reactive red dye 198 removal using multiwall carbon nanotubes in aqueous solution. J. Ind. Eng. Chem. 20, 2921–2926 (2014)

    Google Scholar 

  28. Burakova, E.A.; Dyachkova, T.P.; Rukhov, A.V.; Tugolukov, E.N.; Galunin, E.V.; Tkachev, A.G.; Basheer, A.A.; Ali, I.: Novel and economic method of carbon nanotubes synthesis on a nickel magnesium oxide catalyst using microwave radiation. J. Mol. Liq. 253, 340–346 (2018)

    Google Scholar 

  29. Machado, F.M.; Carmalin, S.A.; Lima, E.C.; Dias, S.L.P.; Prola, L.D.T.; Saucier, C.; Jauris, I.M.; Zanella, I.; Fagan, S.B.: Adsorption of alizarin red S dye by carbon nanotubes: an experimental and theoretical investigation. J. Phys. Chem. C. 120, 18296–18306 (2016)

    Google Scholar 

  30. Sheibani, M.; Ghaedi, M.; Marahel, F.; Ansari, A.: Congo red removal using oxidized multiwalled carbon nanotubes: kinetic and isotherm study. Desalin Water Treat. 53, 844–852 (2015)

    Google Scholar 

  31. Szlachta, M.; Wojtowicz, P.: Adsorption of methylene blue and Congo red from aqueous solution by activated carbon and carbon nanotubes. Water Sci. Technol. 68, 2240–2248 (2013)

    Google Scholar 

  32. Ramazani, S.; Ghaedi, M.; Mortazavi, K.: Multiwalled carbon nanotubes as efficient adsorbent for the removal of congo red. Fresen. Environ. Bull. 20, 2514–2520 (2011)

    Google Scholar 

  33. Dehghani, M.H.; Faraji, M.; Mohammadi, A.; Kamani, H.: Optimization of fluoride adsorption onto natural and modified pumice using response surface methodology: isotherm, kinetic and thermodynamic studies. Kor. J. Chem. Eng. 34, 454–462 (2017)

    Google Scholar 

  34. Ghorbani, F.; Kamari, S.: Application of response surface methodology for optimization of methyl orange adsorption by Fe-grafting sugar beet bagasse. Adsorpt. Sci. Technol. 35, 317–338 (2017)

    Google Scholar 

  35. Tanyildizi, M.S.: Modeling of adsorption isotherms and kinetics of reactive dye from aqueous solution by peanut hull. Chem. Eng. J. 168, 1234–1240 (2011)

    Google Scholar 

  36. Tabassi, D.; Harbi, S.; Louati, I.; Hamrouni, B.: Response surface methodology for optimization of phenol adsorption by activated carbon: Isotherm and kinetics study. Indian J. Chem. Tech. 24, 239–255 (2017)

    Google Scholar 

  37. Pavlovic, M.D.; Buntic, A.V.; Mihajlovski, K.R.; Siler-Marinkovic, S.S.; Antonovic, D.G.; Radovanovic, Z.; Dimitrijevic-Brankovic, S.I.: Rapid cationic dye adsorption on polyphenol-extracted coffee grounds: a response surface methodology approach. J. Taiwan Inst. Chem. E 45, 1691–1699 (2014)

    Google Scholar 

  38. Vyavahare, G.D.; Gurav, R.G.; Jadhav, P.P.; Patil, R.R.; Aware, C.B.; Jadhav, J.P.: Response surface methodology optimization for sorption of malachite green dye on sugarcane bagasse biochar and evaluating the residual dye for phyto and cytogenotoxicity. Chemosphere 194, 306–315 (2018)

    Google Scholar 

  39. Khamparia, S.; Jaspal, D.: Study of decolorisation of binary dye mixture by response surface methodology. J. Environ. Manage 201, 316–326 (2017)

    Google Scholar 

  40. Hong, G.B.; Yang, J.X.: Dye removal using the solid residues from Glossogyne tenuifolia based on response surface methodology. J. Mol. Liq. 242, 82–90 (2017)

    Google Scholar 

  41. Selen, V.; Guler, O.; Ozer, D.; Evin, E.: Synthesized multi-walled carbon nanotubes as a potential adsorbent for the removal of methylene blue dye: kinetics, isotherms, and thermodynamics. Desalin. Water Treat. 57, 8826–8838 (2016)

    Google Scholar 

  42. Jaafaria, J.; Ghozikali, M.G.; Azali, A.; Delkhosh, M.B.; Javid, A.B.; Mohammadi, A.A.; Agarwal, S.; Gupta, V.K.; Sillanpaa, M.; Tkachev, A.G.; Burakov, A.E.: Adsorption of p-Cresol on Al2O3 coated multi-walled carbon nanotubes: Response surface methodology and isotherm study. J. Ind. Eng. Chem. 57, 396–404 (2018)

    Google Scholar 

  43. Yao, Y.J.; Xu, F.F.; Chen, M.; Xu, Z.X.; Zhu, Z.W.: Adsorption behavior of methylene blue on carbon nanotubes. Bioresource Technol. 101, 3040–3046 (2010)

    Google Scholar 

  44. Wahab, M.A.; Jellali, S.; Jedidi, N.: Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modeling. Bioresource Technol. 101, 5070–5075 (2010)

    Google Scholar 

  45. Gao, J.F.; Zhang, Q.; Su, K.; Chen, R.N.; Peng, Y.Z.: Biosorption of Acid Yellow 17 from aqueous solution by non-living aerobic granular sludge. J. Hazard Mater. 174, 215–225 (2010)

    Google Scholar 

  46. Ozer, A.; Dursun, G.: Removal of methylene blue from aqueous solution by dehydrated wheat bran carbon. J. Hazard Mater. 146, 262–269 (2007)

    Google Scholar 

  47. Mousavi, S.J.; Parvini, M.; Ghorbani, M.: Adsorption of heavy metals (Cu2+ and Zn2+) on novel bifunctional ordered mesoporous silica: optimization by response surface methodology. J. Taiwan Inst. Chem. E. 84, 123–141 (2018)

    Google Scholar 

  48. Sukriti, S.J.; Chadha, A.S.; Pruthi, V.; Anand, P.; Bhatia, J.; Kaith, B.S.: Sequestration of dyes from artificially prepared textile effluent using RSM-CCD optimized hybrid backbone based adsorbent-kinetic and equilibrium studies. J. Environ. Manage. 190, 176–187 (2017)

    Google Scholar 

  49. Bandyopadhyay, A.; Choudhury, C.: Crystal violet adsorption on industrial waste (hog fuel ash): equilibrium kinetics with process optimization by response surface modeling. Clean Technol. Environ. 20, 291–308 (2018)

    Google Scholar 

  50. Bazgir, A.; Khorshidi, A.; Kamani, H.; Ashrafi, S.D.; Naghipour, D.: Modeling of azo dyes adsorption on magnetic NiFe2O4/RGO nanocomposite using response surface methodology. J. Environ. Health Sci. 17, 931–947 (2019)

    Google Scholar 

  51. Asfaram, A.; Ghaedi, M.; Hajati, S.; Goudarzi, A.; Bazrafshan, A.A.: Simultaneous ultrasound-assisted ternary adsorption of dyes onto copper-doped zinc sulfide nanoparticles loaded on activated carbon: optimization by response surface methodology. Spectrochim Acta A 145, 203–212 (2015)

    Google Scholar 

  52. Mojarrad, M.; Noroozi, A.; Zeinivand, A.; Kazemzadeh, P.: Response surface methodology for optimization of simultaneous Cr (VI) and as (V) removal from contaminated water by nanofiltration process. Environ. Prog. Sustain. 37, 434–443 (2018)

    Google Scholar 

  53. Li, Z.C.; Sellaoui, L.; Franco, D.; Netto, M.S.; Georgin, J.; Dotto, G.L.; Bajahzar, A.; Belmabrouk, H.; Bonilla-Petriciolet, A.; Li, Q.: Adsorption of hazardous dyes on functionalized multiwalled carbon nanotubes in single and binary systems: Experimental study and physicochemical interpretation of the adsorption mechanism. Chem. Eng. J. 389, 124467 (2020)

    Google Scholar 

  54. Mahmoud, H.R.; Ibrahim, S.M.; El-Mona, S.A.: Textile dye removal from aqueous solutions using cheap MgO nanomaterials: adsorption kinetics, isotherm studies and thermodynamics. Adv. Powder Technol. 27, 223–231 (2016)

    Google Scholar 

  55. Ali, I.; Alharbi, O.M.L.; Alothman, Z.A.; Alwarthan, A.; Al-Mohaimeed, A.M.: Preparation of a carboxymethylcellulose-iron composite for uptake of atorvastatin in water. Int. J. Biol. Macromol. 132, 244–253 (2019)

    Google Scholar 

  56. Dursun, A.Y.; Tepe, O.; Uslu, G.; Dursun, G.; Saatci, Y.: Kinetics of Remazol Black B adsorption onto carbon prepared from sugar beet pulp. Environ. Sci. Pollut. R. 20, 2472–2483 (2013)

    Google Scholar 

  57. Mckay, G.; Otterburn, M.S.; Sweeney, A.G.: Removal of color from effluent using various adsorbents 3 silica: rate-processes. Water Res. 14, 15–20 (1980)

    Google Scholar 

  58. Lu, F.F.; Dong, A.Q.; Ding, G.J.; Xu, K.; Li, J.M.; You, L.J.: Magnetic porous polymer composite for high performance adsorption of acid red 18 based on melamine resin and chitosan. J. Mol. Liq. 294, 111515 (2019)

    Google Scholar 

  59. Thamer, B.M.; Aldalbahi, A.; Moydeen, M.; Al-Enizi, A.M.; El-Hamshary, H.; Singh, M.; Bansal, V.; El-Newehy, M.H.: Alkali-activated electrospun carbon nanofibers as an efficient bifunctional adsorbent for cationic and anionic dyes. Colloid Surface A. 582, 123835 (2019)

    Google Scholar 

  60. Nodehi, R.; Shayesteh, H.; Kelishami, A.R.: Enhanced adsorption of congo red using cationic surfactant functionalized zeolite particles. Microchem. J. 153, 104281 (2020)

    Google Scholar 

  61. Namasivayam, C.; Kavitha, D.: Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes Pigments 54, 47–58 (2002)

    Google Scholar 

  62. Vimonses, V.; Lei, S.M.; Jin, B.; Chowd, C.W.K.; Saint, C.: Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials. Chem. Eng. J. 148, 354–364 (2009)

    Google Scholar 

  63. Ozer, A.; Pirincci, H.B.: The adsorption of Cd(II) ions on sulphuric acid-treated wheat bran. J. Hazard Mater. 137, 849–855 (2006)

    Google Scholar 

  64. Qu, W.; He, D.L.; Huang, H.H.; Guo, Y.N.; Tang, Y.N.; Song, R.J.: Characterization of amino-crosslinked hypromellose and its adsorption characteristics for methyl orange from water. J. Mater Sci. 55, 7268–7282 (2020)

    Google Scholar 

  65. Al-Degs, Y.S.; El-Barghouthi, M.I.; El-Sheikh, A.H.; Walker, G.A.: Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes Pigments. 77, 16–23 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veyis Selen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selen, V., Güler, Ö. Modeling of Congo Red Adsorption onto Multi-walled Carbon Nanotubes Using Response Surface Methodology: Kinetic, Isotherm and Thermodynamic Studies. Arab J Sci Eng 46, 6579–6592 (2021). https://doi.org/10.1007/s13369-020-05304-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05304-w

Keywords

Navigation