Skip to main content
Log in

Bioconvection in a Convectional Nanofluid Flow Containing Gyrotactic Microorganisms over an Isothermal Vertical Cone Embedded in a Porous Surface with Chemical Reactive Species

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this examination, a mathematical model is developed for Darcy free convection with reference to an isothermal vertical cone along with fixed apex half angle, pointing downward in a nanofluid-saturated porous medium. The aim of this methodology is to offer another sort of primary fluid containing nanoparticles and gyrotactic microorganism’s consistence of permeable medium, chemical reaction alongside convective boundary circumstance. The model presents design rules for improvement of imperative fabrication of fertilizer and polymer substance. The present model includes the gyrotactic microorganisms alongside nanoparticles, and cone is dependent on concentration of nanoparticles as well as density of motile microorganisms. Two important impacts Brownian motion as well as thermophoresis are also included in the present model for nanofluids. Reduced system of nonlinear differential equations is derived from governing partial differential of the present flow by using usual transformations along with Oberbeck–Boussinesq approximation. After that, this reduced system is solved numerically with the use of fifth-order Runge–Kutta method in conjunction with the shooting technique. Relevant outcomes are exhibited graphically and talked about quantitatively as for variety in the flow controlling parameters related to the present analysis. Mainly, the observations are bioconvection parameters will in general improve the concentration of the rescaled density of microorganisms and nanoparticles volume fraction and dimensionless motile microorganisms reduce with strong chemical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Das, S.K.; Choi, S.U.S.; Yu, W.; Pradeep, T.: Nanofluids-science and technology. Wiley, Hoboken (2007)

    Book  Google Scholar 

  2. Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128, 240–250 (2006)

    Article  Google Scholar 

  3. Jing, Z.H.U.; Wang, S.; Zheng, L.; Zhang, X.: Heat transfer of nanofluids considering nanoparticle migration and second-order slip velocity. Appl. Math. Mech. Engl. Ed. 38(1), 125–136 (2017)

    Article  MathSciNet  Google Scholar 

  4. Hady, F.M.; Ibrahim, F.S.; Abdel-Gaied, S.M.; Eid, M.R.: Boundary-layer non-Newtonian flow over vertical plate in porous medium saturated with nanofluid. Appl. Math. Mech. Engl. Ed. 32(12), 1577–1586 (2011)

    Article  MathSciNet  Google Scholar 

  5. Hayat, T.; Muhammad, T.; Shehzad, S.A.; Alsaedi, A.: Three-dimensional boundary layer flow of Maxwell nanofluid: mathematical model. Appl. Math. Mech. Engl. Ed. 36(6), 747–762 (2015)

    Article  MathSciNet  Google Scholar 

  6. Shit, G.C.; Mukherjee, S.: MHD graphene-polydimethylsiloxane Maxwell nanofluid flow in a squeezing channel with thermal radiation effects. Appl. Math. Mech. Engl. Ed. 40(9), 1269–1284 (2019)

    Article  MathSciNet  Google Scholar 

  7. Gangadhar, K.; Kannan, T.; Jayalakshmi, P.: Magnetohydrodynamic micropolar nanofluid past a permeable stretching/shrinking sheet with Newtonian heating. J. Braz. Soc. Mech. Sci. Eng. 39(11), 4379–4391 (2017)

    Article  Google Scholar 

  8. Venkata Subba Rao, M.; Gangadhar, K.; Varma, P.L.N.: A spectral relaxation method for three-dimensional MHD flow of nanofluid flow over an exponentially stretching sheet due to convective heating: an application to solar energy. Indian J. Phys. 92(12), 1577–1588 (2018)

    Article  Google Scholar 

  9. Kuznetsov, A.V.: Nanofluid bioconvection in water-based suspensions containing nanoparticles and oxytactic microorganisms: oscillatory instability. Nanoscale Res. Lett. 6(100), 1–13 (2011)

    Google Scholar 

  10. Aziz, A.; Khan, W.A.; Pop, I.: Free convection boundary layer flow past a horizontal flat plate embedded in porous medium filled by nanofluid containing gyrotactic microorganisms. Int. J. Therm. Sci. 56, 48–57 (2012)

    Article  Google Scholar 

  11. Tham, L.; Nazar, R.; Pop, I.: Mixed convection flow over a solid sphere embedded in a porous medium filled by a nanofluid containing gyrotactic microorganisms. Int. J. Heat Mass Transf. 62, 647–660 (2013)

    Article  Google Scholar 

  12. Mutuku, W.N.; Makinde, O.D.: Hydromagnetic bioconvection of nanofluid over a permeable vertical plate due to gyrotactic microorganisms. Comput. Fluids 95, 88–97 (2014)

    Article  MathSciNet  Google Scholar 

  13. Khan, W.A.; Makinde, O.D.: MHD nanofluid bioconvection due to gyrotactic microorganisms over a convectively heat stretching sheet. Int. J. Therm. Sci. 81, 118–124 (2014)

    Article  Google Scholar 

  14. Mahdy, A.: Natural convection boundary layer flow due to gyrotactic microorganisms about a vertical cone in porous media saturated by a nanofluid. J Braz. Soc. Mech. Sci. Eng. 38(1), 67–76 (2016)

    Article  Google Scholar 

  15. Basir, M.F.M.; Kumar, R.; Ismail, A.I.M.; Sarojamma, G.; Satya Narayana, P.V.; Raza, J.; Mahmood, A.: Exploration of thermal-diffusion and diffusion-thermal effects on the motion of temperature-dependent viscous fluid conveying microorganism. Arab. J. Sci. Eng. 44, 8023–8033 (2019)

    Article  Google Scholar 

  16. De, P.: Impact of dual solutions on nanofluid containing motile gyrotactic micro-organisms with thermal radiation. Bionanoscience 9(1), 13–20 (2019)

    Article  Google Scholar 

  17. Khan, W.A.; Makinde, O.D.; Khan, Z.H.: MHD boundary layer flow of a nanofluid containing gyrotactic microorganisms past a vertical plate with Navier slip. Int. J. Heat Mass Transf. 74, 285–291 (2014)

    Article  Google Scholar 

  18. Khan, W.A.; Uddin, M.J.; Ismail, A.I.: Free convection of non-Newtonian nanofluids in porous media with gyrotactic microorganisms. Transp. Porous Med. 97, 241–252 (2013)

    Article  MathSciNet  Google Scholar 

  19. Avramenko, A.A.; Kuznetsov, A.V.: Stability of a suspension of gyrotactic microorganisms in superimposed fluid and porous layers. Int. Commun. Heat Mass Transf. 31, 1057–1066 (2014)

    Article  Google Scholar 

  20. Hill, N.A.; Pedley, T.J.; Kessler, J.O.: Growth of bioconvection patterns in a suspension of gyrotactic microorganisms in a layer of finite depth. J. Fluid Mech. 208, 509–543 (1989)

    Article  MathSciNet  Google Scholar 

  21. Abdul-Kahar, R.; Kandasamy, R.: Muhaimin: scaling group transformation for boundary-layer flow of a nanofluid past a porous vertical stretching surface in the presence of chemical reaction with heat radiation. Comput. Fluids 52, 15–21 (2011)

    Article  MathSciNet  Google Scholar 

  22. Kameswaran, P.K.; Narayana, M.; Subanda, P.; Murthy, P.V.S.N.: Hydromagnetic nanofluid flow due to a stretching or shrinking sheet with viscous dissipation and chemical reaction effects. Int. J. Heat Mass Transf. 55, 7587–7595 (2012)

    Article  Google Scholar 

  23. Venkateswarlu, B.; Satya Narayana, P.V.: Chemical reaction and radiation absorption effects on the flow and heat transfer of a nanofluid in a rotating system. Appl. Nanosci. 5, 351–360 (2015)

    Article  Google Scholar 

  24. Gangadhar, K.; Suresh Kumar, C.; Ranga Rao, T.: A spectral relaxation approach for diffusion thermo effect on tangent hyperbolic fluid past a stretching surface in the presence of chemical reaction and convective boundary condition. Comput. Therm. Sci. 10(5), 389–403 (2018)

    Article  Google Scholar 

  25. Imtiaz, M.; Shahid, F.; Hayat, T.; Alsaedi, A.: Melting heat transfer in Cu water and Ag-water nanofluids flow with homogeneous–heterogeneous reactions. Appl. Math. Mech. Engl. Ed. 40(4), 465–480 (2019)

    Article  MathSciNet  Google Scholar 

  26. Khan, M.; Malik, M.Y.; Salahuddin, T.; Khan, F.: Generalized diffusion effects on Maxwell nanofluid stagnation point flow over a stretchable sheet with slip conditions and chemical reaction. J Braz. Soc. Mech. Sci. Eng. 41, 138 (2019)

    Article  Google Scholar 

  27. Zhao, C.; Qiao, X.; Shao, Q.; Hassan, M.; Ma, Z.; Yao, L.: Synergistic effect of hydrogen and ammonia on lignin. Ind. Crops Prod. 146, 112177 (2020)

    Article  Google Scholar 

  28. Qiao, X.; Zhao, C.; Shao, Q.; Hassan, M.: Structural characterization of corn stover lignin after hydrogen peroxide presoaking prior to ammonia fiber expansion pretreatment. Energy Fuels 32(5), 6022–6030 (2018)

    Article  Google Scholar 

  29. Zhao, C.; Qiao, X.; Cao, Y.; Shao, Q.: Application of hydrogen peroxide presoaking prior to ammonia fiber expansion of energy crops. Fuel 205, 184–191 (2017)

    Article  Google Scholar 

  30. Dogonchi, A.S.; Chamkha, A.J.; Hashemi-Tilehnoee, M.; Seyyedi, S.M.; Rizwan-Ul-Haq,; Ganji, D.D.: Effects of homogeneous-heterogeneous reactions and thermal radiation on magneto-hydrodynamic Cu-water nanofluid flow over an expanding flat plate with non-uniform heat source. J. Cent. South Univ. 26, 1161–1171 (2019)

    Article  Google Scholar 

  31. Ibrahim, W.; Shanker, B.: Magnetohydrodynamic boundary layer flow and heat transfer of a nanofluid over non-isothermal stretching sheet. J. Heat Transf. 136(5), 051701 (2014)

    Article  Google Scholar 

  32. Aziz, A.: A similarity solution for laminar thermal boundary layer over flat plate with convective surface boundary condition. Commun. Nonlinear Sci. Numer. Simul. 14, 1064–1068 (2009)

    Article  Google Scholar 

  33. Ishak, A.: Similarity solutions for flow and heat transfer over permeable surface with convective boundary conditions. Appl. Math. Comput. 217, 837–842 (2010)

    Article  MathSciNet  Google Scholar 

  34. Ames, W.F.: Nonlinear partial differential equations. Academic Press, New York (1965)

    MATH  Google Scholar 

  35. Hillesdon, A.J.; Pedley, T.J.; Kessler, J.O.: The development of concentration gradients in a suspension of chemotactic bacteria. Bull. Math. Biol. 57(299–303), 305–344 (1995)

    MATH  Google Scholar 

  36. Panalagusamy, R.; Ponnammal, K.: Investigation on robot arm model using a new parallel RK-fifth order algorithm. Int. J. Comput. Math. Sci. Appl. 2, 155–164 (2008)

    Google Scholar 

Download references

Acknowledgments

Authors would like to thank the valuable comments which are provided by the reviewers to improve the content of the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali J. Chamkha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, M.V.S., Gangadhar, K., Chamkha, A.J. et al. Bioconvection in a Convectional Nanofluid Flow Containing Gyrotactic Microorganisms over an Isothermal Vertical Cone Embedded in a Porous Surface with Chemical Reactive Species. Arab J Sci Eng 46, 2493–2503 (2021). https://doi.org/10.1007/s13369-020-05132-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05132-y

Keywords

Navigation