Skip to main content
Log in

Modeling and Precise Prediction of Thermophysical Attributes of Water/EG Blend-Based CNT Nanofluids by NSGA-II Using ANN and RSM

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, the thermophysical properties of water–ethylene glycol mixture-based CNT nanofluid (NF) including relative thermal conductivity (TC), viscosity, and specific heat were investigated. These properties were optimized using the NSGA-II method, and the effects of temperature and volume fraction (VF) parameters were investigated on these properties. RSM and MLP methods were used to model these properties. Some correlations are presented in terms of temperature and VF to predict these properties. Convergence coefficients for relative TC, viscosity, and specific capacity are R2 = 0.9893, 0.9665, and 0.9977, respectively. The results showed that the MLP model is better than RSM for this prediction. It was found that the rate of viscosity enhancement reaches up to 3.5 times the amount of base fluid with the addition of nanoparticles (NP). The amount of increase in TC is increased by 17% after the addition of NPs to the base fluid. It was also found that temperature and VF of NPs have a direct effect on relative TC and viscosity. But relative specific heat is only affected by the VF. Both ANN and RSM models predicted the relative specific heat well. But MLP was more accurate in predicting relative viscosity than RSM. Also, both models had a good performance in predicting relative TC in some points. The optimization results were presented with the NSGA-II algorithm for different conditions, and these points do not have priority over each other and all are optimal. It was also found that the VF parameter is much more important than the temperature parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Choi, S.U.S.: Enhancing conductivity of fluids with nanoparticles. ASME Fluid Eng. Div. 231, 99–105, 1995

    Google Scholar 

  2. Esfe, M.H.; Wongwises, S.; Naderi, A.; Asadi, A.; Safaei, M.R.; Rostamian, H.; et al.: Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: Experimental data and modeling using artificial neural network and correlation. Int. Commun. Heat Mass Transf. 66, 100–104 (2015)

    Google Scholar 

  3. Esfe, M.H.; Arani, A.A.A.; Rezaie, M.; Yan, W.M.; Karimipour, A.: Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int. Commun. Heat Mass Transf. 66, 189–195 (2015)

    Google Scholar 

  4. Esfe, M.H.; Yan, W.M.; Akbari, M.; Karimipour, A.; Hassani, M.: Experimental study on thermal conductivity of DWCNT-ZnO/water-EG nanofluids. Int. Commun. Heat Mass Transf. 68, 248–251 (2015)

    Google Scholar 

  5. Esfe, M.H.; Esfandeh, S.; Arani, A.A.A.: Proposing a modified engine oil to reduce cold engine start damages and increase safety in high temperature operating conditions. Powder Technol. 355, 251–263 (2019)

    Google Scholar 

  6. Esfe, M.H.; Arani, A.A.A.; Esfandeh, S.; Afrand, M.: Proposing new hybrid nano-engine oil for lubrication of internal combustion engines: Preventing cold start engine damages and saving energy. Energy 170, 228–238 (2019)

    Google Scholar 

  7. Esfe, M.H.; Arani, A.A.A.; Esfandeh, S.: Improving engine oil lubrication in light-duty vehicles by using of dispersing MWCNT and ZnO nanoparticles in 5W50 as viscosity index improvers (VII). Appl. Therm. Eng. 143, 493–506 (2018)

    Google Scholar 

  8. Żyła, G.; Fal, J.: Viscosity, thermal and electrical conductivity of silicon dioxide–ethylene glycol transparent nanofluids: an experimental studies. Thermochim. Acta 650, 106–113, 2017

    Google Scholar 

  9. Chamkha, A.J.; Molana, M.; Rahnama, A.; Ghadami, F.: On the nanofluids applications in microchannels: a comprehensive review. Powder Technology (2018)

  10. Esfe, M.H.; Hosseinizadeh, E.; Esfandeh, S.: Flooding numerical simulation of heterogeneous oil reservoir using different nanoscale colloidal solutions. J. Mol. Liq. 302, 111972 (2020)

    Google Scholar 

  11. Esfe, M.H.; Esfandeh, S.: 3D numerical simulation of the enhanced oil recovery process using nanoscale colloidal solution flooding. J. Mol. Liq. 301, 112094 (2020)

    Google Scholar 

  12. Esfe, M.H.; Arani, A.A.A.; Badi, R.S.; Rejvani, M.: ANN modeling, cost performance and sensitivity analyzing of thermal conductivity of DWCNT–SiO2/EG hybrid nanofluid for higher heat transfer. J. Therm. Anal. Calorim. 131(3), 2381–2393 (2018)

    Google Scholar 

  13. Esfe, M.H.; Esfandeh, S.; Hosseinizadeh, E.: Nanofluid flooding for enhanced oil recovery in a heterogeneous two-dimensional anticline geometry. Int. Commun. Heat Mass Transf. 118, 104810 (2020)

    Google Scholar 

  14. Esfe, M.H.; Rostamian, H.; Shabani-Samghabadi, A.; Arani, A.A.A.: Application of three-level general factorial design approach for thermal conductivity of MgO/water nanofluids. Appl. Therm. Eng. 127, 1194–1199 (2017)

    Google Scholar 

  15. Esfe, M. H.; Esfandeh, S.: (2020). Nanofluid flooding in a randomized heterogeneous porous media and investigating the effect of capillary pressure and diffusion on oil recovery factor. J. Mol. Liq. 113646

  16. Hemmati-Sarapardeh, A.; Varamesh, A.; Husein, M.M.; Karan, K.: On the evaluation of the viscosity of nanofluid systems: modeling and data assessment. Renew. Sustain. Energy Rev. 81, 313–329, 2018

    Google Scholar 

  17. Esfe, M.H.; Saedodin, S.; Biglari, M.; Rostamian, H.: Experimental investigation of thermal conductivity of CNTs-Al2O3/water: a statistical approach. Int. Commun. Heat Mass Transf. 69, 29–33, 2015

    Google Scholar 

  18. Esfe, M.H.; Rostamian, H.; Sarlak, M.R.; Rejvani, M.; Alirezaie, A.: Rheological behavior characteristics of TiO2-MWCNT/10w40 hybrid nano-oil affected by temperature, concentration and shear rate: an experimental study and a neural network simulating. Physica E: Low-dimensional Systems and Nanostructures 94, 231–240, North-Holland (2017)

  19. Garbadeen, I.D.; Sharifpur, M.; Slabber, J.M.; Meyer, J.P.: Experimental study on natural convection of MWCNT-water nanofluids in a square enclosure. Int. Commun. Heat Mass Transf. 88, 1–8, 2017

    Google Scholar 

  20. Moldoveanu, G.M.; Huminic, G.; Minea, A.A.; Huminic, A.: Experimental study on thermal conductivity of stabilized Al2O3 and SiO2 nanofluids and their hybrid. Int. J. Heat Mass Transf. 127, 450–457, 2018

    Google Scholar 

  21. Naddaf, A.; Heris, S.Z.: Experimental study on thermal conductivity and electrical conductivity of diesel oil-based nanofluids of graphene nanoplatelets and carbon nanotubes. Int. Commun. Heat Mass Transf. 95, 116–122, 2018

    Google Scholar 

  22. Maheshwary, P.B.; Handa, C.C.; Nemade, K.R.: A comprehensive study of effect of concentration, particle size and particle shape on thermal conductivity of titania/water based nanofluid. Appl. Therm. Eng. 119, 79–88, 2017

    Google Scholar 

  23. Esfe, M.H.; Esfandeh, S.; Afrand, M.; Rejvani, M.; Rostamian, S.H.: Experimental evaluation, new correlation proposing and ANN modeling of thermal attributes of EG based hybrid nanofluid containing ZnO-DWCNT nanoparticles for internal combustion engines applications. Appl. Therm. Eng. 133, 452–463, 2018

    Google Scholar 

  24. Bouguerra, N.; Poncet, S.; Elkoun, S.: Dispersion regimes in alumina/water-based nanofluids: simultaneous measurements of thermal conductivity and dynamic viscosity. Int. Commun. Heat Mass Transf. 92, 51–55, 2018

    Google Scholar 

  25. Jiang, W.; Du, K.; Li, Y.; Yang, L.: Experimental investigation on the influence of high temperature on viscosity, thermal conductivity and absorbance of ammonia–water nanofluids. Int. J. Refrig 82, 189–198, 2017

    Google Scholar 

  26. Esfe, M.H.; Esfandeh, S.; Rejvani, M.: Modeling of thermal conductivity of MWCNT-SiO 2 (30: 70%)/EG hybrid nanofluid, sensitivity analyzing and cost performance for industrial applications. J. Therm. Anal. Calorim. 131(2), 1437–1447, 2018

    Google Scholar 

  27. Esfe, M.H.; Hajmohammad, M.H.: Thermal conductivity and viscosity optimization of nanodiamond-Co3O4/EG (40: 60) aqueous nanofluid using NSGA-II coupled with RSM. J. Mol. Liq. 238, 545–552, 2017

    Google Scholar 

  28. Esfe, M.H.; Saedodin, S.; Mahmoodi, M.: Experimental studies on the convective heat transfer performance and thermophysical properties of MgO–water nanofluid under turbulent flow. Exp. Therm. Fluid Sci. 52, 68–78 (2014)

    Google Scholar 

  29. Esfe, M.H.; Saedodin, S.; Biglari, M.; Rostamian, H.: An experimental study on thermophysical properties and heat transfer characteristics of low volume concentrations of Ag-water nanofluid. Int. Commun. Heat Mass Transf. 74, 91–97 (2016)

    Google Scholar 

  30. Esfe, M.H.; Razi, P.; Hajmohammad, M.H.; Rostamian, S.H.; Sarsam, W.S.; Arani, A.A.A.; Dahari, M.: Optimization, modeling and accurate prediction of thermal conductivity and dynamic viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids by NSGA-II using ANN. Int. Commun. Heat Mass Transf. 82, 154–160 (2017)

    Google Scholar 

  31. Karimipour, A.; Esfe, M.H.; Safaei, M.R.; Semiromi, D.T.; Jafari, S.; Kazi, S.N.: Mixed convection of copper–water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method. Physica A: Stat. Mech. Appl. 402, 150–168 (2014)

    Google Scholar 

  32. Esfe, M.H.; Alidoust, S.: Experimental evaluation of MWCNT–Al 2O3 (40–60%)/5W50 hybrid nanofluid and comparison with MWCNT–Al2O3 (35–65%)/5W50 hybrid nanofluid with focus on thermophysical properties and cost performance index. Eur. Phys. J. Plus 135(10), 1–17 (2020)

    Google Scholar 

  33. Esfe, M.H.; Rejvani, M.; Karimpour, R.; Arani, A.A.A.: Estimation of thermal conductivity of ethylene glycol-based nanofluid with hybrid suspensions of SWCNT–Al2O3 nanoparticles by correlation and ANN methods using experimental data. J. Therm. Anal. Calorim. 128(3), 1359–1371 (2017)

    Google Scholar 

  34. Esfe, M.H.; Behbahani, P.M.; Arani, A.A.A.; Sarlak, M.R.: Thermal conductivity enhancement of SiO 2–MWCNT (85: 15%)–EG hybrid nanofluids. J. Therm. Anal. Calorim. 128(1), 249–258 (2017)

    Google Scholar 

  35. Esfe, M.H.; Hajmohammad, M.H.; Razi, P.; Ahangar, M.R.H.; Arani, A.A.A.: The optimization of viscosity and thermal conductivity in hybrid nanofluids prepared with magnetic nanocomposite of nanodiamond cobalt-oxide (ND-Co3O4) using NSGA-II and RSM. Int. Commun. Heat Mass Transf. 79, 128–134 (2016)

    Google Scholar 

  36. Amani, M.; Amani, P.; Jumpholkul, C.; Mahian, O.; Wongwises, S.: Hydrothermal optimization of SiO 2/water nanofluids based on attitudes in decision making. Int. Commun. Heat Mass Transf. 90, 67–72 (2018)

    Google Scholar 

  37. Tahani, M.; Vakili, M.; Khosrojerdi, S.: Experimental evaluation and ANN modeling of thermal conductivity of graphene oxide nanoplatelets/deionized water nanofluid. Int. Commun. Heat Mass Transf. 76, 358–365 (2016)

    Google Scholar 

  38. Ahmadloo, E.; Azizi, S.: Prediction of thermal conductivity of various nanofluids using artificial neural network. Int. Commun. Heat Mass Transfer 74, 69–75 (2016)

    Google Scholar 

  39. Esfe, M.H.; Esfande, S.; Rostamian, S.H.: Experimental evaluation, new correlation proposing and ANN modeling of thermal conductivity of ZnO-DWCNT/EG hybrid nanofluid for internal combustion engines applications. Appl. Therm. Eng. (2017)

  40. Vakili, M.; Karami, M.; Delfani, S.; Khosrojerdi, S.: Experimental investigation and modeling of thermal radiative attributes of f-CNTs nanofluid by artificial neural network with Levenberg–Marquardt algorithm. Int. Commun. Heat Mass Transf. 78, 224–230 (2016)

    Google Scholar 

  41. Afrand, M.; Toghraie, D.; Sina, N.: Experimental study on thermal conductivity of water-based Fe3O4 nanofluid: development of a new correlation and modeled by artificial neural network. Int. Commun. Heat Mass Transf. 75, 262–269 (2016)

    Google Scholar 

  42. Kumaresan, V.; Velraj, R.: Experimental investigation of the thermo-physical attributes of water–ethylene glycol mixture based CNT nanofluids. Thermochim. Acta 545, 180–186 (2012)

    Google Scholar 

  43. Cavazzuti, M.: Design of experiments. In: Optimization Methods (pp. 13–42). Springer, Berlin (2013)

  44. Ross, P.J.; Ross, P.J.: Taguchi techniques for quality engineering: loss function, orthogonal experiments, parameter and tolerance design (No. TS156 R12). New York: McGraw-Hill (1988)

  45. Myers, R.H.; Montgomery, D.C.: Response surface methodology: process and product optimization using designed experiments, vol. 4, pp. 156–179. Wiley, New York (1995)

  46. Noordin, M.Y.; Venkatesh, V.C.; Sharif, S.; Elting, S.; Abdullah, A.: Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel. J. Mater. Process. Technol. 145(1), 46–58 (2004)

    Google Scholar 

  47. Reddy, S.T.; Wang, C.Y.; Sakhaee, K.; Brinkley, L.; Pak, C.Y.: Effect of low-carbohydrate high-protein diets on acid-base balance, stone-forming propensity, and calcium metabolism. Am. J. Kidney Dis. 40(2), 265–274 (2002)

    Google Scholar 

  48. Esfe, M.H.; Esfandeh, S.; Niazi, S.: An experimental investigation, sensitivity analysis and RSM analysis of MWCNT (10)-ZnO (90)/10W40 nanofluid viscosity. J. Mol. Liq. 288, 111020 (2019)

    Google Scholar 

  49. Esfe, M.H.; Tilebon, S.M.S.: Statistical and artificial based optimization on thermo-physical properties of an oil based hybrid nanofluid using NSGA-II and RSM. Physica A: Stati. Mech. Appl. 537, 122126 (2020)

    Google Scholar 

  50. Esfe, M.H.; Hajmohammad, M.H.; Rostamian, S.H.: Multi-objective particle swarm optimization of thermal conductivity and dynamic viscosity of magnetic nanodiamond-cobalt oxide dispersed in ethylene glycolusing RSM. Int. Commun. Heat Mass Transf. 117, 104760 (2020)

    Google Scholar 

  51. Esfe, M.H.; Kamyab, M.H.: Mathematical monitoring of agglomeration effects on thermophysical properties of water-based nanofluids using MLP and RSM. J. Therm. Anal. Calorime. 1–18 (2020)

  52. Esfe, M.H.; Amiri, M.K.; Bahiraei, M.: Optimizing thermophysical properties of nanofluids using response surface methodology and particle swarm optimization in a non-dominated sorting genetic algorithm. J. Taiwan Inst. Chem. Eng. 103, 7–19 (2019)

    Google Scholar 

  53. Khan, J.; Wei, J.S.; Ringner, M.; Saal, L.H.; Ladanyi, M.; Westermann, F.; Meltzer, P.S.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat. Med. 7(6), 673 (2001)

    Google Scholar 

  54. Zhang, G.; Patuwo, B.E.; Hu, M.Y.: Forecasting with artificial neural networks: The state of the art. Int. J. Forecast. 14(1), 35–62 (1998)

    Google Scholar 

  55. Orhan, U.; Hekim, M.; Ozer, M.: EEG signals classification using the K-means clustering and a multilayer perceptron neural network model. Expert Syst. Appl. 38(10), 13475–13481 (2011)

    Google Scholar 

  56. Ruck, D.W.; Rogers, S.K.; Kabrisky, M.; Oxley, M.E.; Suter, B.W.: The multilayer perceptron as an approximation to a Bayes optimal discriminant function. IEEE Trans. Neural Netw. 1(4), 296–298 (1990)

    Google Scholar 

  57. Li, H.; Zhang, Q.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)

    Google Scholar 

  58. Coello, C.A.C.; Lamont, G.B.; Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-objective Problems, vol. 5. Springer, New York (2007)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soheyl Alidoust.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemmat Esfe, M., Alidoust, S. Modeling and Precise Prediction of Thermophysical Attributes of Water/EG Blend-Based CNT Nanofluids by NSGA-II Using ANN and RSM. Arab J Sci Eng 46, 6423–6437 (2021). https://doi.org/10.1007/s13369-020-05086-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05086-1

Keywords

Navigation