Skip to main content
Log in

Dry, MQL, and Nanofluid MQL Machining of Ti–6Al–4V Using Uncoated WC–Co Insert: Application of Jatropha Oil as Base Cutting Fluid and Graphene Nanoplatelets as Additives

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Nanocutting fluids are very popular due to their excellent thermo-physical and tribological properties which provide adequate cooling and lubrication during metal cutting. Conventional dry machining of difficult-to-cut superalloy Ti–6Al–4V faces several challenges. To overcome this, application of cutting fluid is indeed a necessity. However, performance of conventional minimum quantity lubrication (MQL) system, in which air–oil mist is sprayed into cutting zone, is somewhat limited due to inadequate penetration into tool–work and tool–chip interfacial regions, especially at high cutting speeds. MQL performance can further be enhanced by applying nanocutting fluid in which nano-sized additives are dispersed into the base cutting fluid; this is known as nanofluid MQL (NFMQL). In order to take care of several alarming issues related to environmental protection and occupational health hazards, the present study explores application feasibility of biodegradable Jatropha oil added with graphene nanoplatelets as nanocutting fluid. Machinability of Ti–6Al–4V is assessed under NFMQL; results are compared to that of dry and conventional MQL machining. Cutting force magnitude, tool-tip temperature, morphology of worn-out insert, chip’s macro/micro-morphology and surface roughness of the machined work part, etc., are studied in detail. For MQL and NFMQL, tool wear morphology detects existence of ‘unaffected zones’ which indicates sustenance of strong hydrodynamic tribo-film of cutting fluid, thus protecting the insert against wear. Up to 82 m/min cutting speed, NFMQL causes lower tool flank wear than dry and conventional MQL. On the other hand, superior machined surface finish is obtained under NFMQL up to 106 m/min cutting speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cui, C.; Hu, B.; Zhao, L.; Liu, S.: Titanium alloy production technology, market prospects and industry development. Mater. Des. 32(3), 1684–1691 (2011)

    Google Scholar 

  2. Ezugwu, E.O.; Wang, Z.M.: Titanium alloys and their machinability—a review. J. Mater. Proc. Technol. 68(3), 262–274 (1997)

    Google Scholar 

  3. Jianxin, D.; Yousheng, L.; Wenlong, S.: Diffusion wear in dry cutting of Ti–6Al–4V with WC/Co carbide tools. Wear 265(11–12), 1776–1783 (2008)

    Google Scholar 

  4. Gerez, J.M.; Sanchez-Carrilero, M.; Salguero, J.; Batista, M.; Marcos, M.: A SEM and EDS based study of the microstructural modifications of turning inserts in the dry machining of Ti6Al4 V alloy. AIP Conf. Proc. 1181(1), 567–574 (2009)

    Google Scholar 

  5. Jaffery, S.I.; Mativenga, P.T.: Assessment of the machinability of Ti–6Al–4V alloy using the wear map approach. Int. J. Adv. Manuf. Technol. 40(7–8), 687–696 (2009)

    Google Scholar 

  6. Sun, S.; Brandt, M.; Dargusch, M.S.: Characteristics of cutting forces and chip formation in machining of titanium alloys. Int. J. Mach. Tools Manuf 49(7–8), 561–568 (2009)

    Google Scholar 

  7. Cantero, J.L.; Tardio, M.M.; Canteli, J.A.; Marcos, M.; Miguelez, M.H.: Dry drilling of alloy Ti–6Al–4V. Int. J. Mach. Tools Manuf 45(11), 1246–1255 (2005)

    Google Scholar 

  8. Álvarez, M.; Gómez, A.; Salguero, J.; Batista, M.; Huerta, M.M.; Marcos Bárcena, M.: SOM–SEM–EDS identification of tool wear mechanisms in the dry-machining of aerospace titanium alloys. Adv. Mater. Res. 107, 77–82 (2010)

    Google Scholar 

  9. Ibrahim, G.A.; Che-Haron, C.H.; Ghani, J.A.: Tool wear mechanism in continuous cutting of difficult-to-cut material under dry machining. Adv. Mater. Res. 126, 195–201 (2010)

    Google Scholar 

  10. Muthukrishnan, N.; Davim, P.: Influence of coolant in machinability of titanium alloy (Ti–6Al–4V). J. Surf. Eng. Mater. Adv. Technol. 1(1), 9–14 (2011)

    Google Scholar 

  11. Yuan, S.M.; Yan, L.T.; Liu, W.D.; Liu, Q.: Effects of cooling air temperature on cryogenic machining of Ti–6Al–4V alloy. J. Mater. Process. Technol. 211(3), 356–362 (2011)

    Google Scholar 

  12. Su, Y.; He, N.; Li, L.; Li, X.L.: An experimental investigation of effects of cooling/lubrication conditions on tool wear in high-speed end milling of Ti–6Al–4V. Wear 261(7–8), 760–766 (2006)

    Google Scholar 

  13. Davim, J.P.; Sreejith, P.S.; Gomes, R.; Peixoto, C.: Experimental studies on drilling of aluminium (AA 1050) under dry, minimum quantity of lubricant and flood-lubricated conditions. J. Eng. Manuf. Proc. Inst. Mech. Eng. Part B 220(10), 1605–1611 (2006)

    Google Scholar 

  14. Astakhov, V.P.: Ecological machining: near-dry machining. In: Machining, pp. 195–223. Springer, London (2008)

  15. Sadeghi, M.H.; Haddad, M.J.; Tawakoli, T.; Emami, M.: Minimal quantity lubrication-MQL in grinding of Ti–6Al–4V titanium alloy. Int. J. Adv. Manuf. Technol. 44(5–6), 487–500 (2009)

    Google Scholar 

  16. Rahim, E.A.; Sasahara, H.: A study of the effect of palm oil as MQL lubricant on high speed drilling of titanium alloys. Tribol. Int. 44(3), 309–317 (2011)

    Google Scholar 

  17. Behera, B.C.; Ghosh, S.; Rao, P.V.: Wear behavior of PVD TiN coated carbide inserts during machining of Nimonic 90 and Ti6Al4 V superalloys under dry and MQL conditions. Ceram. Int. 42(13), 14873–14885 (2016)

    Google Scholar 

  18. Setti, D.; Sinha, M.K.; Ghosh, S.; Rao, P.V.: Performance evaluation of Ti–6Al–4V grinding using chip formation and coefficient of friction under the influence of nanofluids. Int. J. Mach. Tools Manuf 88, 237–248 (2015)

    Google Scholar 

  19. Paul, S.; Singh, A.K.; Ghosh, A.: Grinding of Ti–6Al–4V under small quantity cooling lubrication environment using alumina and MWCNT nanofluids. Mater. Manuf. Process. 32(6), 608–615 (2017)

    Google Scholar 

  20. Songmei, Y.; Xuebo, H.; Guangyuan, Z.; Amin, M.: A novel approach of applying copper nanoparticles in minimum quantity lubrication for milling of Ti–6Al–4V. Adv. Prod. Eng. Manag. 12(2), 139 (2017)

    Google Scholar 

  21. Sahu, N.K.; Andhare, A.B.; Raju, R.A.: Evaluation of performance of nanofluid using multiwalled carbon nanotubes for machining of Ti–6Al–4V. Mach. Sci. Technol. 22(3), 476–492 (2018)

    Google Scholar 

  22. Hegab, H.; Kishawy, H.A.; Gadallah, M.H.; Umer, U.; Deiab, I.: On machining of Ti–6Al–4V using multi-walled carbon nanotubes-based nano-fluid under minimum quantity lubrication. Int. J. Adv. Manuf. Technol. 97(5–8), 1593–1603 (2018)

    Google Scholar 

  23. Nam, J.; Lee, S.W.: Machinability of titanium alloy (Ti–6Al–4V) in environmentally-friendly micro-drilling process with nanofluid minimum quantity lubrication using nanodiamond particles. Int. J. Precis. Eng. Manuf. Green Technol. 5(1), 29–35 (2018)

    Google Scholar 

  24. Jamil, M.; Khan, A.M.; Hegab, H.; Gong, L.; Mia, M.; Gupta, M.K.; He, N.: Effects of hybrid Al2O3-CNT nanofluids and cryogenic cooling on machining of Ti–6Al–4V. Int. J. Adv. Manuf. Technol. 102(9–12), 3895–3909 (2019)

    Google Scholar 

  25. Yi, S.; Li, N.; Solanki, S.; Mo, J.; Ding, S.: Effects of graphene oxide nanofluids on cutting temperature and force in machining Ti–6Al–4V. Int. J. Adv. Manuf. Technol. 103(1–4), 1481–1495 (2019)

    Google Scholar 

  26. Rao, P.N.; Srikant, R.R.: Sustainable machining utilizing vegetable oil based nanofluids. In: Proceedings of IEEE International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials (ICSTM) 2015; Chennai, pp. 664–672

  27. Lawal, S.A.: A review of application of vegetable oil-based cutting fluids in machining non-ferrous metals. Indian J. Sci. Technol. 6(1), 3951–3956 (2013)

    Google Scholar 

  28. Fox, N.J.; Stachowiak, G.W.: Vegetable oil-based lubricants—a review of oxidation. Tribol. Int. 40(7), 1035–1046 (2007)

    Google Scholar 

  29. Berman, D.; Erdemir, A.; Sumant, A.V.: Graphene: a new emerging lubricant. Mater. Today 17(1), 31–42 (2014)

    Google Scholar 

  30. Zin, V.; Barison, S.; Agresti, F.; Colla, L.; Pagura, C.; Fabrizio, M.: Improved tribological and thermal properties of lubricants by graphene based nano-additives. RSC Adv. 6(64), 59477–59486 (2016)

    Google Scholar 

  31. Samuel, J.; Rafiee, J.; Dhiman, P.; Yu, Z.Z.; Koratkar, N.: Graphene colloidal suspensions as high performance semi-synthetic metal-working fluids. J. Phys. Chem. C 115(8), 3410–3415 (2011)

    Google Scholar 

  32. Uysal, A.: Investigation of flank wear in MQL milling of ferritic stainless steel by using nano graphene reinforced vegetable cutting fluid. Ind. Lubr. Tribol. 68(4), 446–451 (2016)

    MathSciNet  Google Scholar 

  33. Singh, R.K.; Sharma, A.K.; Mandal, V.; Gaurav, K.; Nag, A.; Kumar, A.; Dixit, A.R.; Mandal, A.; Das, A.K.: Influence of graphene-based nanofluid with minimum quantity lubrication on surface roughness and cutting temperature in turning operation. Mater. Today Proc. 5(11), 24578–24586 (2018)

    Google Scholar 

  34. Singh, H.; Sharma, V.S.; Singh, S.; Dogra, M.: Nanofluids assisted environmental friendly lubricating strategies for the surface grinding of titanium alloy: Ti6Al4 V-ELI. Journal of Manufacturing Processes 39, 241–249 (2019)

    Google Scholar 

  35. Sarker, K.: Review and comparison of various properties of jatropha oil biodiesel. Int. J. Eng. Technol. 7(6), 1965–1971 (2016)

    Google Scholar 

  36. Kikuchi, M.: The use of cutting temperature to evaluate the machinability of titanium alloys. Acta Biomater. 5(2), 770–775 (2009)

    Google Scholar 

  37. Shaw, M.C.: Metal Cutting Principles, 2nd edn. Oxford University Press, Oxford (2004)

    Google Scholar 

  38. Amrita, M.; Srikant, R.R.; Sitaramaraju, A.V.: Performance evaluation of nanographite-based cutting fluid in machining process. Mater. Manuf. Process. 29(5), 600–605 (2014)

    Google Scholar 

  39. Khan, M.A.; Mia, M.; Dhar, N.R.: High-pressure coolant on flank and rake surfaces of tool in turning of Ti–6Al–4V: investigations on forces, temperature, and chips. Int. J. Adv. Manuf. Technol. 90(5–8), 1977–1991 (2017)

    Google Scholar 

  40. Musfirah, A.H.; Ghani, J.A.; Haron, C.C.: Tool wear and surface integrity of inconel 718 in dry and cryogenic coolant at high cutting speed. Wear 376, 125–133 (2017)

    Google Scholar 

  41. Musavi, S.H.; Davoodi, B.; Niknam, S.A.: Effects of reinforced nanoparticles with surfactant on surface quality and chip formation morphology in MQL-turning of superalloys. J. Manuf. Process. 40, 128–139 (2019)

    Google Scholar 

  42. Li, A.; Zhao, J.; Luo, H.; Pei, Z.; Wang, Z.: Progressive tool failure in high-speed dry milling of Ti–6Al–4V alloy with coated carbide tools. Int. J. Adv. Manuf. Technol. 58(5–8), 465–478 (2012)

    Google Scholar 

  43. Sun, S.; Brandt, M.; Mo, J.P.: Evolution of tool wear and its effect on cutting forces during dry machining of Ti–6Al–4V alloy. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 228(2), 191–202 (2014)

    Google Scholar 

  44. Pervaiz, S.; Deiab, I.; Rashid, A.; Nicolescu, M.: Minimal quantity cooling lubrication in turning of Ti–6Al–4V: influence on surface roughness, cutting force and tool wear. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 231(9), 1542–1558 (2017)

    Google Scholar 

  45. de Melo, A.C.; Milan, J.C.G.; Silva, M.B.D.; Machado, Á.R.: Some observations on wear and damages in cemented carbide tools. J. Braz. Soc. Mech. Sci. Eng. 28(3), 269–277 (2006)

    Google Scholar 

  46. da Silva, R.B.; Machado, Á.R.; Ezugwu, E.O.; Bonney, J.; Sales, W.F.: Tool life and wear mechanisms in high speed machining of Ti–6Al–4V alloy with PCD tools under various coolant pressures. J. Mater. Process. Technol. 213(8), 1459–1464 (2013)

    Google Scholar 

  47. Lin, H.; Wang, C.; Yuan, Y.; Chen, Z.; Wang, Q.; Xiong, W.: Tool wear in Ti–6Al–4V alloy turning under oils on water cooling comparing with cryogenic air mixed with minimal quantity lubrication. Int. J. Adv. Manuf. Technol. 81(1–4), 87–101 (2015)

    Google Scholar 

  48. Yıldırım, Ç.V.; Sarıkaya, M.; Kıvak, T.; Şirin, Ş.: The effect of addition of hBN nanoparticles to nanofluid-MQL on tool wear patterns, tool life, roughness and temperature in turning of Ni-based Inconel 625. Tribol. Int. 134, 443–456 (2019)

    Google Scholar 

  49. Wang, Z.G.; Rahman, M.; Wong, Y.S.; Neo, K.S.; Sun, J.; Tan, C.H.; Onozuka, H.: Study on orthogonal turning of titanium alloys with different coolant supply strategies. Int. J. Adv. Manuf. Technol. 42(7–8), 621–632 (2009)

    Google Scholar 

  50. Leksycki, K.; Feldshtein, E.: On the analysis of chip shaping after finishing turning of Ti6Al4 V titanium alloy under dry, wet and MQL conditions. Arch. Mech. Technol. Mater. 39(1), 36–40 (2019)

    Google Scholar 

  51. Machado, A.R.; Wallbank, J.: Machining of titanium and its alloys—a review. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 204(1), 53–60 (1990)

    Google Scholar 

  52. Cotterell, M.; Byrne, G.: Dynamics of chip formation during orthogonal cutting of titanium alloy Ti–6Al–4V. CIRP Ann. 57(1), 93–96 (2008)

    Google Scholar 

  53. Sutter, G.; List, G.: Very high speed cutting of Ti–6Al–4V titanium alloy–change in morphology and mechanism of chip formation. Int. J. Mach. Tools Manuf 66, 37–43 (2013)

    Google Scholar 

  54. Joshi, S.; Tewari, A.; Joshi, S.S.: Microstructural characterization of chip segmentation under different machining environments in orthogonal machining of Ti6Al4 V. J. Eng. Mater. Technol. 137(1), 011005 (2015)

    Google Scholar 

  55. Shivpuri, R.; Hua, J.; Mittal, P.; Srivastava, A.K.; Lahoti, G.D.: Microstructure-mechanics interactions in modeling chip segmentation during titanium machining. CIRP Ann. 51(1), 71–74 (2002)

    Google Scholar 

  56. Upadhyay, V.; Jain, P.K.; Mehta, N.K.: Comprehensive study of chip morphology in turning of Ti–6Al–4V. In: Proceedings of 5th International and 26th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12th–14th, IIT Guwahati, Assam (2014)

  57. Joshi, S.; Tewari, A.; Joshi, S.: Influence of preheating on chip segmentation and microstructure in orthogonal machining of Ti6Al4 V. J. Manuf. Sci. Eng. 135(6), 061017 (2013)

    Google Scholar 

  58. Khandekar, S.; Sankar, M.R.; Agnihotri, V.; Ramkumar, J.: Nano-cutting fluid for enhancement of metal cutting performance. Mater. Manuf. Process. 27(9), 963–967 (2012)

    Google Scholar 

  59. Pawade, R.S.; Joshi, S.S.: Mechanism of chip formation in high-speed turning of Inconel 718. Mach. Sci. Technol. 15(1), 132–152 (2011)

    Google Scholar 

  60. Pawade, R.S.; Reddy, D.S.N.; Kadam, G.S.: Chip segmentation behaviour and surface topography in high-speed turning of titanium alloy (Ti–6Al–4V) with eco-friendly water vapour. Int. J. Mach. Mach. Mater. 13(2–3), 113–137 (2013)

    Google Scholar 

  61. Iqbal, S.A.; Mativenga, P.T.; Sheikh, M.A.: A comparative study of the tool–chip contact length in turning of two engineering alloys for a wide range of cutting speeds. Int. J. Adv. Manuf. Technol. 42(1–2), 30–40 (2009)

    Google Scholar 

  62. Sutter, G.: Chip geometries during high-speed machining for orthogonal cutting conditions. Int. J. Mach. Tools Manuf 45(6), 719–726 (2005)

    Google Scholar 

  63. Kaynak, Y.; Gharibi, A.; Ozkutuk, M.: Experimental and numerical study of chip formation in orthogonal cutting of Ti-5553 alloy: the influence of cryogenic, MQL, and high pressure coolant supply. Int. J. Adv. Manuf. Technol. 94(1–4), 1411–1428 (2018)

    Google Scholar 

  64. Barry, J.; Byrne, G.; Lennon, D.: Observations on chip formation and acoustic emission in machining Ti–6Al–4V alloy. Int. J. Mach. Tools Manuf 41(7), 1055–1070 (2001)

    Google Scholar 

  65. Shyha, I.; Gariani, S.; El-Sayed, M.A.; Huo, D.: Analysis of microstructure and chip formation when machining Ti–6Al–4V. Metals 8(3), 185 (2018)

    Google Scholar 

  66. Shuang, Y.; John, M.; Songlin, D.: Experimental investigation on the performance and mechanism of graphene oxide nanofluids in turning Ti–6Al–4V. J. Manuf. Process. 43(1), 164–174 (2019)

    Google Scholar 

  67. Ezugwu, E.O.; Bonney, J.; Da Silva, R.B.; Cakir, O.: Surface integrity of finished turned Ti–6Al–4V alloy with PCD tools using conventional and high pressure coolant supplies. Int. J. Mach. Tools Manuf 47(6), 884–891 (2007)

    Google Scholar 

  68. Sun, J.; Guo, Y.B.: A new multi-view approach to characterize 3D chip morphology and properties in end milling titanium Ti–6Al–4V. Int. J. Mach. Tools Manuf 48(12–13), 1486–1494 (2008)

    Google Scholar 

  69. Friedrich, K.; Breuer, U.: Multifunctionality of polymer composites: challenges and new solutions. William Andrew, Norwich (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurav Datta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, S.P., Datta, S. Dry, MQL, and Nanofluid MQL Machining of Ti–6Al–4V Using Uncoated WC–Co Insert: Application of Jatropha Oil as Base Cutting Fluid and Graphene Nanoplatelets as Additives. Arab J Sci Eng 45, 9599–9618 (2020). https://doi.org/10.1007/s13369-020-04849-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04849-0

Keywords

Navigation