Skip to main content
Log in

Ultrawideband Antenna Combined with a Reconfigurable Stop-Band Filter for Medical Imaging Detection Applications

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, a ultrawideband antenna combined with a reconfigurable stop-band filter for medical imaging detection applications is presented. The proposed antenna provides dual-band operation at 1.8–3.2 GHz and 4–6.2 GHz, which satisfies widely the bandwidth for ISM application systems.These bands are achieved by the introduction of an open square ring on the top side and a pair of square of CSRRs on the ground, respectively. Equivalent circuit of the filter has been presented using ADS simulator. Its performance results have been compared to those obtained with CST simulator. The results of both methods show reasonably good agreement in terms of the frequency of operation and the impedance bandwidth. The study of the antenna properties is also taken into account. The resulting design has a compact configuration and enables easy control of the two desired operating frequencies. This proposed antenna is matched with \(50\Omega \) to allow an easier connection. To validate the proposed concept, a prototype was fabricated and measured. The experimental results are presented and discussed. The obtained results show a good agreement between experimental and simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Dong, J.; Li, Q.; Deng, L.: Compact planar ultrawideband antennas with 3.5/5.2/5.8 GHz triple band-notched characteristics for internet of things applications. Sensors 17, 349 (2017)

    Article  Google Scholar 

  2. Rahayu, Y.; Rahman, T. A.; Ngah, R.; and Hall, P. S.: Ultra wideband technology and its applications. In: International Conference on Wireless and Optical Communications Networks IEEE, Indonesia (2008)

  3. Chóliz, J.; Hernández, Á.; Valdovinos, A.: A framework for uwb-based communication and location tracking systems for wireless sensor networks. Sensors 11(9), 9045 (2011)

    Article  Google Scholar 

  4. Zhang, J.; Orlik, P.V.; Sahinoglu, Z.; Molisch, A.F.; Kinney, P.: UWB systems for wireless sensor networks. Proc. IEEE 97(2), 313–331 (2009)

    Article  Google Scholar 

  5. Kerkhoff, A.; Ling, H.: Design of a planar monopole antenna for use with ultra-wideband (UWB) having a band-notched characteristic. In: IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450), Columbus, OH, vol. 1, pp. 830–833 (2003)

  6. Schantz, H.G.; Wolence, G.; Myszka, E.M.: Frequency notched UWB antenna. In: Proceedings of the IEEE Conference on Ultra-Wideband Systems and Technologies, Reston, VA, USA, 16–19, pp. 214–218 (2003)

  7. Nejatijahromi, M.; Naghshvarianjahromi, M.; Rahman, M.: Compact CPW fed switchable UWB antenna as an antenna filter at narrow-frequency bands. Progress Electromagn. Res. C 81, 199–209 (2018)

    Article  Google Scholar 

  8. Nejatijahromi, M.; Rahman, M.; Naghshvarianjahromi, M.: Continuously tunable WiMAX band-notched UWB antenna with fixed WLAN notched band. UWB Monopole Antenna with WLAN Frequency Band-Notched Performance by using a Pair of E-Shaped Slits. Progress Electromagn. Res. Lett. 75, 97–103 (2018)

    Article  Google Scholar 

  9. Valizade, Arash; Ghobadi, Ch.; Nourinia, J.; Nourinia, J.; Parchin, N. Ojaroudi; Ojaroudi, Mohammad: Band-notch slot antenna with enhanced bandwidth by using \(\Omega \)-shaped strips protruded inside rectangular slots for UWB applications. Appl. Comput. Electromagn. Soc. J. 27 (2012)

  10. Li, Y.; Li, W.; Ye, Q.: A reconfigurable triple-notch-band antenna integrated with defected microstrip structure band-stop filter for ultra-wideband cognitive radio applications. Int. J. Antennas Propag. (2013). https://doi.org/10.1155/2013/472645

    Article  Google Scholar 

  11. Ojaroudi Parchin, N.; Ojaroudi, M.; Ghadimi, N.: UWB monopole antenna with WLAN frequency band-notched performance by using a pair of E-shaped slits. Appl. Comput. Electromagn. Soc. J. 28(12), 1244–1249 (2013)

    Google Scholar 

  12. Yingsong, Li; Li, Wenxing; Wenhua, Yu: A switchable UWB slot antenna using SIS-HSIR and SIS-SIR for multi-mode wireless communications Applications. ACES J. 27(4), 340–351 (2012)

    Google Scholar 

  13. Nejatijahromi, M.; Naghshvarianjahromi, M.; Rahma, M.: Switchable planar monopole antenna between ultra-wideband and narrow band behavior. Progress Electromagn. Res. Lett. 75, 131–137 (2018)

    Article  Google Scholar 

  14. Ojaroudi, N.; Ojaroudi, M.; Ebarhimian, H.: Band-notched UWB microstrip slot antenna with enhanced bandwidth by using a pair of C-shaped slots. Microw. Opt. Technol. Lett. 54(2), 515–518 (2012)

    Article  Google Scholar 

  15. Li, Yingsong; Li, Wenxing; Ye, Qiubo: A CPW-fed circular wide-slot UWB antenna with dual-notch bands by combining slot and parasitic element Techniques. Microw. Opt. Technol. Lett. 56(15), 1240–1244 (2014)

    Article  Google Scholar 

  16. Chu, Qing-Xin; Wen, Ding-Liang; Luo, Yu: A broadband dual-polarized antenna with Y-shaped feeding lines. IEEE Trans. Antennas Propag. 63(2), 483–490 (2015)

    Article  Google Scholar 

  17. Rahman, M.; NagshvarianJahromi, M.; Mirjavadi, S.S.; Hamouda, A.M.: Compact UWB band-notched antenna with integrated bluetooth for personal wireless communication and UWB applications. Electronics 8, 158 (2019)

    Article  Google Scholar 

  18. Bonache, J.; Gil, I.; García-García, J.; Martín, F.: Novel microstrip bandpass filters based on complementary split-ring resonators. IEEE Trans. Microw. Theory Techn. 54(1), 265–271 (2006)

    Article  Google Scholar 

  19. Ansari, M.Arif Hussain; Jha, A.Kumar; Akhtar, M.J.: Design and application of the CSRR based planar sensor for non-invasive measurement of complex permittivity. IEEE Sensors J. 15(12), 7181–7189 (2015)

    Article  Google Scholar 

  20. Horestani, A.K.; Fumeaux, C.; Al-Sarawi, S.F.; Abbott, D.: Displacement sensor based on diamond-shaped tapered split ring resonator. IEEE Sensors J. 13(4), 1153–1160 (2013)

    Article  Google Scholar 

  21. Jiang, D.; Xu, Y.; Xu, R.; Lin, W.: Compact dual-band-notched UWB planar monopole antenna with modified CSRR. Electron. Lett. 48(20), 1250–1252 (2012)

    Article  Google Scholar 

  22. Karami, A.; Shaterian, Z.; Bonache, J.; Martín, F.; Fumeaux, C.: Reconfigurable and tunable S-shaped split-ring resonators and application in band-notched UWB antennas. IEEE Trans. Antennas Prop. 64(9), 3766–3776 (2016)

    Article  MathSciNet  Google Scholar 

  23. Falcone, F.; Lopetegi, T.; Baena, J.D.; Marques, R.; Martin, R.; Sorolla, M.: Effective nagative stopband microstrip lines based on complementary split ring resonators. IEEE Microw. Wireless Components Lett. 14(6), 280–282 (2004)

    Article  Google Scholar 

  24. Rahman, M.; Ko, D.S.; Park, J.D.: A compact multiple notched ultra-wide band antenna with an analysis of the CSRR-to-CSRR coupling for portable UWB applications. Sensors 17, 2174 (2017)

    Article  Google Scholar 

  25. Rahman, M.; Park, J.D.: The smallest form factor UWB antenna with quintuple rejection bands for IoT applications utilizing RSRR and RCSRR. Sensors 18, 911 (2018)

    Article  Google Scholar 

  26. Sassi, I.; Talbi, L.; Hettak, K.: Compact multi-band filter based on multi-ring complementary split ring resonators. Progress Electromagn. Res. C 57, 127–135 (2015)

    Article  Google Scholar 

  27. Cao, H.; He, S.; Li, H.; Yang, S.: A compact wideband bandpass filter using novel CSRR loaded QMSIW resonator with high selectivity. Progress Electromagn. Res. C 41, 239–254 (2013)

    Article  Google Scholar 

  28. Baena, J.D.; et al.: Equivalent circuit models for split ring resonators and complementary split rings resonators coupled to planar transmission lines. IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005)

    Article  Google Scholar 

  29. Rahmana, MuhibUr; Khana, Wasif Tanveer; Imran, Muhammad: Penta-notched UWB antenna with sharp frequency edge selectivity using combination of SRR, CSRR, and DGS. Int. J. Electron. Commun. 93, 116–122 (2018)

    Article  Google Scholar 

  30. Rahmana, MuhibUr; Khana, Wasif Tanveer; Imran, Muhammad: Penta-notched UWB antenna with sharp frequency edge selectivity using combination of SRR, CSRR, and DGS. Int. J. Electron. Commun. 93, 154–157 (2016)

    Google Scholar 

  31. Rahman, M.; NaghshvarianJahromi, M.; Mirjavadi, S.S.; Hamouda, A.M.: Bandwidth enhancement and frequency scanning array antenna using novel UWB filter integration technique for OFDM UWB radar applications in wireless vital signs monitoring. Sensors 18(9), 3155 (2018)

    Article  Google Scholar 

  32. Su, L.; Bonache, J.; Mata-Contreras, J.; Martín, F.: Modeling and applications of metamaterial transmission lines loaded with pairs of coupled complementary split-ring resonators (CSRRs). IEEE Trans. Antennas Wireless Prop. Lett. 15, 154–157 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otman Aghzout.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amdaouch, I., Aghzout, O., Naghar, A. et al. Ultrawideband Antenna Combined with a Reconfigurable Stop-Band Filter for Medical Imaging Detection Applications. Arab J Sci Eng 46, 1019–1028 (2021). https://doi.org/10.1007/s13369-020-04820-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04820-z

Keywords

Navigation