Skip to main content
Log in

Particulate-Reinforced Tungsten Heavy Alloy/Yttria-Stabilized Zirconia Composites Sintered Through Spark Plasma Sintering

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The current work investigates the mechanical properties of W–Ni–Fe tungsten heavy alloy (WHA) composites reinforced with 0.25, 0.5, 0.75 and 1.0 wt% of yttria-stabilized zirconia (YSZ). The composites were fabricated through spark plasma sintering (SPS) technique. Detailed microstructural characterization of the sintered samples, including contiguity, grain size and matrix volume fraction, was carried out. It was found that the W–W contiguity was decreasing with increasing amount of YSZ. Hardness and yield strength of the sintered samples were found to be decreasing with the increasing amount of YSZ. The WHA with 0.25 wt% YSZ exhibited the highest mechanical properties among all compositions chosen for this study. Fractography revealed W–W intergranular fracture indicating a brittle mode failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

WHA:

Tungsten heavy alloy

YSZ:

Yttria-stabilized zirconia

Y2O3 :

Yttrium oxide

WC:

Tungsten carbide

SiC:

Silicon carbide

La2O3 :

Lanthanum oxide

HfO2 :

Hafnium dioxide

TiO2 :

Titanium dioxide

ZrO2 :

Zirconium dioxide

ZrC:

Zirconium carbide

Sc2O3 :

Scandium oxide

SPS:

Spark plasma sintering

BN:

Boron nitride

EDS:

Energy-dispersive X-ray spectroscopy

UTS:

Ultimate tensile strength

References

  1. Ariel, E.; Barta, J.; Brandon, D.: Preparation and properties of heavy metals. Powder Met. Int. 5(3), 126–129 (1973)

    Google Scholar 

  2. German, R.M.; Churn, K.S.: Sintering atmosphere effects on the ductility of W–Ni–Fe heavy metals. Metall. Trans. A 15(4), 747–754 (1984). https://doi.org/10.1007/bf02644206

    Article  Google Scholar 

  3. Kim, Y., et al.: The effect of yttrium oxide on the sintering behavior and hardness of tungsten. Metals Mater. Int 12(3), 245–248 (2006). https://doi.org/10.1007/bf03027538

    Article  Google Scholar 

  4. Henager, C.H.; Kurtz, R.J.; Roosendaal, T.J.; Borlaug, B.A.; Setyawan, W.; Wagner, K.B.; Odette, G.R.; Cunningham, K.; Fields, K.A.; Gragg, D.; Zok, F.W. 2014. Recent progress in the development of ductile-phase toughened tungsten for plasma-facing materials (No. PNNL-SA-104749). Pacific Northwest National Lab.(PNNL), Richland, WA (United States)

  5. Islam, S.H.; Akhtar, F.; Askari, S.J.; Jokhio, M.T.; Qu, X.: Tensile behavior change depending on the varying tungsten content of W-Ni-Fe alloys. Int. J. Refract. Met. Hard Mater 25(5–6), 380 (2007)

    Google Scholar 

  6. Upadhyaya, A.; Tiwari, S.K.; Mishra, P.: Microwave sintering of W-Ni–Fe alloy. Script. Mater. 56(1), 5–8 (2007). https://doi.org/10.1016/j.scriptamat.2006.09.010

    Article  Google Scholar 

  7. Çalışkan, N.K.; Durlu, N.; Bor, Ş.: Swaging of liquid phase sintered 90W–7Ni–3Fe tungsten heavy alloy. Int. J. Refract. Metals Hard Mater. 36, 260–264 (2013). https://doi.org/10.1016/j.ijrmhm.2012.10.001

    Article  Google Scholar 

  8. Lee, K.H., et al.: Effect of oxide dispersoids addition on mechanical properties of tungsten heavy alloy fabricated by mechanical alloying process. Mater. Sci. Eng. A 452–453, 55–60 (2007). https://doi.org/10.1016/j.msea.2006.10.155

    Article  Google Scholar 

  9. Cho, K.; Chi, Y.C.; Duffy, J.: Microscopic observations of adiabatic shear bands in three different steels. Metall. Trans. A 21(5), 1161–1175 (1990). https://doi.org/10.1007/bf02698247

    Article  Google Scholar 

  10. Staker, M.R.: The relation between adiabatic shear instability strain and material properties. Acta Metall. 29(4), 683–689 (1981). https://doi.org/10.1016/0001-6160(81)90151-6

    Article  Google Scholar 

  11. Bose, A.; Coque, H.A.; Langford Jr., J.: Development and properties of new tungsten-based composites for penetrators. Int. J. Powder Metall. 28(4), 383–394 (1992)

    Google Scholar 

  12. Kim, E.-P., et al.: The effect of managanese addition on the microstructure of W–Ni–Fe heavy alloy. Metall. Mater. Trans. A 30(3), 627–632 (1999). https://doi.org/10.1007/s11661-999-0054-4

    Article  Google Scholar 

  13. Johnson, G.R., et al.: Response of various metals to large torsional strains over a large range of strain rates—part 2: less ductile metals. J. Eng. Mater. Technol. 105(1), 48–53 (1983). https://doi.org/10.1115/1.3225618

    Article  Google Scholar 

  14. Park, S., et al.: Dynamic deformation behavior of an oxide-dispersed tungsten heavy alloy fabricated by mechanical alloying. Metall. Mater. Trans. A 32(8), 2011–2020 (2001). https://doi.org/10.1007/s11661-001-0013-1

    Article  Google Scholar 

  15. Kim, D.-K., et al.: Correlation of microstructure with dynamic deformation behavior and penetration performance of tungsten heavy alloys fabricated by mechanical alloying. Metall. Mater. Trans. A 31(10), 2475–2489 (2000). https://doi.org/10.1007/s11661-000-0193-0

    Article  Google Scholar 

  16. Ryu, H.J., et al.: Microstructural control of and mechanical properties of mechanically alloyed tungsten heavy alloys. Metals Mater. 5(2), 185–191 (1999). https://doi.org/10.1007/bf03026051

    Article  Google Scholar 

  17. German, R.M. 1990. Microstructure and impurity effects on tungsten heavy alloys. https://dx.doi.org/10.21236/ada224220

  18. Ravi Kiran, U., et al.: Refractory metal alloying: a new method for improving mechanical properties of tungsten heavy alloys. J. Alloys Compd. 709, 609–619 (2017). https://doi.org/10.1016/j.jallcom.2017.03.174

    Article  Google Scholar 

  19. Itoh, Y.; Ishiwata, Y.: Strength properties of yttrium-oxide-dispersed tungsten alloy. JSME Int. J. Ser. A Mech. Mater. Eng. 39(3), 429–434 (1996). https://doi.org/10.1299/jsmea1993.39.3_429

    Article  Google Scholar 

  20. Jing-lian, F., et al.: Preparation of fine grain tungsten heavy alloy with high properties by mechanical alloying and yttrium oxide addition. J. Mater. Process. Technol. 208(1–3), 463–469 (2008). https://doi.org/10.1016/j.jmatprotec.2008.01.010

    Article  Google Scholar 

  21. Aguirre, M.V., et al.: Mechanical properties of tungsten alloys with Y2O3 and titanium additions. J. Nucl. Mater. 417(1–3), 516–519 (2011). https://doi.org/10.1016/j.jnucmat.2010.12.120

    Article  Google Scholar 

  22. Jinfang W.; Dunwen Z.; Liu Z.; Weiwei L.; Zhibiao T.; Sheng Daib Int. J. Refract. Metals Hard Mater., 71, p ii. https://doi.org/10.1016/s0263-4368(17)30933-2

  23. Coşkun, S.; Öveçoğlu, M.L.: Effects of Y2O3 additions on mechanically alloyed and sintered W—4 wt% SiC composites. Int. J. Refract. Metals Hard Mater. 29(6), 651–655 (2011). https://doi.org/10.1016/j.ijrmhm.2011.04.013

    Article  Google Scholar 

  24. Kim, Y., et al.: Fabrication of high temperature oxides dispersion strengthened tungsten composites by spark plasma sintering process. Int. J. Refract. Metals Hard Mater. 27(5), 842–846 (2009). https://doi.org/10.1016/j.ijrmhm.2009.03.003

    Article  Google Scholar 

  25. Daoush, W.M.R., et al.: Enhancement of physical and mechanical properties of oxide dispersion-strengthened tungsten heavy alloys. Metall. Mater. Trans. A 47(5), 2387–2395 (2016). https://doi.org/10.1007/s11661-016-3360-7

    Article  Google Scholar 

  26. Patra, A.; Saxena, R.; Karak, S.K.: Int. J. Refract. Metals Hard Mater. (2016). https://doi.org/10.1016/j.ijrmhm.2016.07.017

    Article  Google Scholar 

  27. Luo, H.Y.; Zan, L.M.; Xu, X.; Zhu, Q.; Liu, X.Y.; Cheng, J.Q.; Wu, Y.C.: Microstructure and helium irradiation performance of W–ZrC/Sc2O3 composites prepared spark plasma sintering. Int. J. Refract Metal Hard Mater. 72, 373–379 (2018)

    Article  Google Scholar 

  28. Langa, T.; Olubambi, P.; Shabalala, T.: Mxolisi brendon shongwe. Int. J. Refract. Metal Hard Mater. (2017). https://doi.org/10.1016/j.ijrmhm.2017.12.027S0263-4368(17)30801-6

    Article  Google Scholar 

  29. Yang, F., et al.: Studies on the pressed yttrium oxide-tungsten matrix as a possible dispenser cathode material. Mater. Chem. Phys. 149–150, 288–294 (2015). https://doi.org/10.1016/j.matchemphys.2014.10.019

    Article  Google Scholar 

  30. Ryu, H.J.; Hong, S.H.: Fabrication and properties of mechanically alloyed oxide-dispersed tungsten heavy alloys. Mater. Sci. Eng. A 363(1–2), 179–184 (2003). https://doi.org/10.1016/s0921-5093(03)00641-5

    Article  Google Scholar 

  31. Calvo, A., et al.: Self-passivating tungsten alloys of the system W–Cr–Y for high temperature applications. Int. J. Refract. Metals Hard Mater. 73, 29–37 (2018). https://doi.org/10.1016/j.ijrmhm.2018.01.018

    Article  Google Scholar 

  32. Tao, L.; Jinglian, F.; Boyun, H.; Meigui, Q.; Jiamin, T.: Effect of mechanical alloying and trace Y2O3 addition on microstructure of fine-grain tungsten heavy alloy rods. Rare Metal Mater. Eng. 39(2), 314–317 (2010)

    Google Scholar 

  33. Fan, J.L., et al.: Fine-grained tungsten heavy alloy by mechanical alloying with yttrium oxide addition. Mater. Sci. Forum 534–536, 1261–1264 (2007). https://doi.org/10.4028/www.scientific.net/msf.534-536.1261

    Article  Google Scholar 

  34. Dong, Z., et al.: Microstructure refinement in W–Y2O3 alloy fabricated by wet chemical method with surfactant addition and subsequent spark plasma sintering. Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-06437-z

    Article  Google Scholar 

  35. ASTM E407–07(2015)e1 Standard practice for microetching metals and alloys. Original Published May 2007/1999. 10.1520/E407-07 (2015)

  36. Mondal, A.; Upadhyaya, A.; Agrawal, D.: Microwave and conventional sintering of 90W–7Ni–3Cu alloys with premixed and prealloyed binder phase. Mater. Sci. Eng. A 527(26), 6870–6878 (2010). https://doi.org/10.1016/j.msea.2010.07.074

    Article  Google Scholar 

  37. Demirskyi, D., et al.: Peculiarities of the neck growth process during initial stage of spark-plasma, microwave and conventional sintering of WC spheres. J. Alloys Compd. 523, 1–10 (2012). https://doi.org/10.1016/j.jallcom.2012.01.146

    Article  Google Scholar 

  38. Hu, K., et al.: Spark-plasma sintering of W–5.6Ni–1.4Fe heavy alloys: densification and grain growth. Metall. Mater. Trans. A 44(2), 923–933 (2012). https://doi.org/10.1007/s11661-012-1454-4

    Article  Google Scholar 

  39. Ding, L., et al.: Effects of sintering temperature on fine-grained tungsten heavy alloy produced by high-energy ball milling assisted spark plasma sintering. Int. J. Refract. Metals Hard Mater. 33, 65–69 (2012). https://doi.org/10.1016/j.ijrmhm.2012.02.017

    Article  Google Scholar 

  40. Lee, K.H., et al.: Effect of oxide dispersoids addition on mechanical properties of tungsten heavy alloy fabricated by mechanical alloying process. Mater. Sci. Eng. A 452–453, 55–60 (2007). https://doi.org/10.1016/j.msea.2006.10.155

    Article  Google Scholar 

  41. Das, J.; Appa Rao, G.; Pabi, S.K.: Microstructure and mechanical properties of tungsten heavy alloys. Mater. Sci. Eng. A 527(29–30), 7841–7847 (2010). https://doi.org/10.1016/j.msea.2010.08.071

    Article  Google Scholar 

  42. Kaczorowski, M.; Skoczylas, P.; Krzyńska, A.: The influence of Fe content on spreading ability of tungsten heavy alloys matrix on tungsten surface. Arch. Foundry Eng. 11(3), 103–106 (2011)

    Google Scholar 

  43. Zhao, M., et al.: Thermal shock behavior of fine grained W–Y2 O3 materials fabricated via two different manufacturing technologies. J. Nucl. Mater. 470, 236–243 (2016). https://doi.org/10.1016/j.jnucmat.2015.12.042

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the RGEMS SEED Grant from the Vellore Institute of Technology, Vellore, India, for the partial funding of this work. The use of facilities available at VIT Vellore provided by Department of Science and Technology—India is duly acknowledged for the successful completion of this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Raja Annamalai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthuchamy, A., Boggupalli, L.P., Yadav, D.R. et al. Particulate-Reinforced Tungsten Heavy Alloy/Yttria-Stabilized Zirconia Composites Sintered Through Spark Plasma Sintering. Arab J Sci Eng 45, 9283–9291 (2020). https://doi.org/10.1007/s13369-020-04732-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04732-y

Keyword

Navigation