Skip to main content
Log in

Shear Strengthening of Reinforced Concrete T-Beams by Using Fiber-Reinforced Polymer Composites: A Data Analysis

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Many studies have compiled experimental results of fiber-reinforced polymer (FRP) shear strengthened reinforced concrete (RC) beams into databases for the investigation of the effect of different parameters on the efficacy of FRP strengthening schemes. However, these studies are mainly comprised of the results of FRP shear strengthened rectangular RC beams. The RC T-beams are stronger in shear than the rectangular RC beams, represent the most realistic situation, and have more significance in the construction industry. However, no study comprising of a large number of results of FRP-strengthened RC T-beams has been found. Therefore, the present study represents the results of more than 250 tests performed on the shear deficient RC T-beams strengthened with FRP and also the essential material characteristics. It also compares the accuracy of seven widely used design guidelines for the prediction of shear contribution of FRP based on the experimental shear contribution of FRP. This study concludes that the efficacy of the FRP strengthening scheme varies with the adopted strengthening schemes, whereas the predictions of different design guidelines observed to be not promising. However, predictions by fib and TR55 guidelines have good correlation and standard deviation values, respectively, with the experimental results than the other guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

a :

Shear span (mm)

A f :

Area of FRP shear reinforcement and Af= 2ntfwf

b :

Width of beam cross section

d :

Effective depth of the beam

d 0 :

Distance from extreme compression fiber of concrete to centroid of outermost layer of tensile reinforcements as per AS 5100.8 guideline

d f :

Effective depth of FRP

E f :

Elastic modulus of FRP (MPa) (in GPa for fib)

fbd/ffd/ffe/ffu :

Design bond strength/design strength/effective design strength/ultimate strength of FRP

f c :

Cylindrical compressive strength of concrete

f ctm :

Mean tensile strength of concrete

f fu :

Tensile strength of FRP

h w :

Web depth of completely impregnated with U-wrap

k 1 :

Concrete strength modification factor

k 2 :

Wrapping scheme modification factor

k b :

Geometrical corrective factor in CNR-DT 200R1

k EN :

The covering coefficient

k G :

Additional corrective factor; assumed equal to 0.037 mm for wet lay-up systems

K B :

Empirically calibrated coefficient; assumed equal to 1.128

kR/ϕR/ƞR :

Reduction coefficient based on radius at the corners

k v :

Bond-reduction coefficient

L e :

Effective bond length

m FRP :

Number of FRP strips intersected by the critical shear crack with bonded length less than the Le

n :

Number of FRP layers

n FRP :

Number of FRP strips intersected by the critical shear crack

r c :

Radius at the corners

s f :

Center-to-center spacing strips

S u :

Ultimate FRP-support slip; in CNR-DT 200 R1 and DAfStb assumed equal to 0.25 mm and 0.201 mm, respectively

t f :

Thickness of FRP/layer

w f :

Width of FRP

z :

Internal lever arm

α :

Angle in between principal fibers of FRP and the line perpendicular to the longitudinal axis of the member

β :

Angle in between the longitudinal axis of the beam and principal fibers of FRP

εf,e/εfu :

Effective/ultimate strain FRP

ε x :

Longitudinal strain at beam depth

α time :

Reduction factor based on long-term loading; assumed as equal to 1.0

Γfd :

Fracture energy

τ f :

Max. shear stress at FRP-concrete surface

θ :

Inclination of critical shear crack

ƞ :

Factor based on FRP wrapping scheme

ρ f :

The FRP reinforcement ratio and ρf=(2ntfwf/bsf)

References

  1. ASCE: 2017 Infrastructure Report Card. American Society of Civil Engineers, Reston, VA (2017)

    Google Scholar 

  2. Ilki, A.; Demir, C.; Bedirhanoglu, I.; Kumbasar, N.: Seismic retrofit of brittle and low strength RC columns using fiber reinforced polymer and cementitious composites. Adv. Struct. Eng. 12, 325–347 (2009)

    Google Scholar 

  3. Hollaway, L.C.; Teng, J.G.: Strengthening and Rehabilitation of Civil Infrastructures Using Fibre-Reinforced Polymer (FRP) Composites. Woodhead Publishing, Cambridge (2008)

    Google Scholar 

  4. Islam, M.R.; Mansur, M.A.; Maalej, M.: Shear strengthening of RC deep beams using externally bonded FRP systems. Cem. Concr. Compos. 27, 413–420 (2005)

    Google Scholar 

  5. Al-Rousan, R.Z.; Issa, M.A.: The effect of beam depth on the shear behavior of reinforced concrete beams externally strengthened with carbon fiber-reinforced polymer composites. Adv. Struct. Eng. 19, 1769–1779 (2016)

    Google Scholar 

  6. Bastani, A.; Das, S.; Lawn, D.: Rehabilitation of shear deficient steel beams using BFRP fabric. Structures 19, 349–361 (2019)

    Google Scholar 

  7. Sundarraja, M.C.; Prabhu, G.G.: Experimental investigation on strengthening of CFST members under flexure using CFRP fabric. Arab. J. Sci. Eng. 39, 659–668 (2014)

    Google Scholar 

  8. Tahir, M.F.: Response of seismically detailed beam column joints repaired with CFRP under cyclic loading. Arab. J. Sci. Eng. 41, 1355–1362 (2016)

    Google Scholar 

  9. Jeevan, N.; Jagannatha Reddy, H.N.: Strengthening of RC beams using externally bonded laminate (EBL) technique with end anchorages under flexure. Asian J. Civ. Eng. 19, 263–272 (2018)

    Google Scholar 

  10. Husain, M.; Eisa, A.S.; Hegazy, M.M.: Strengthening of reinforced concrete shear walls with openings using carbon fiber-reinforced polymers. Int. J. Adv. Struct. Eng. 11, 129–150 (2019)

    Google Scholar 

  11. Basha, A.; Fayed, S.; Elsamak, G.: Flexural behavior of cracked RC beams retrofitted with strain hardening cementitious composites. KSCE J. Civ. Eng. 23, 2644–2656 (2019)

    Google Scholar 

  12. Aravind, N.; Samanta, A.K.; Thanikal, J.V.; Singha Roy, D.K.: Comparative study on the performance of corrugated GFRP laminates on normal and pre-cracked flexural concrete members. Asian J. Civ. Eng. 20, 799–806 (2019)

    Google Scholar 

  13. Chellapandian, M.; Praksh, S.S.: Behavior of FRP-strengthened reinforced concrete columns under pure compression—experimental and numerical studies. In: Rao, A., Ramanjaneyulu, K. (eds.) Recent Advances in Structural Engineering, pp. 663–673. Springer, Singapore (2019)

    Google Scholar 

  14. Sas, G.; Täljsten, B.; Barros, J.; Lima, J.; Carolin, A.: Are available models reliable for predicting the FRP contribution to the shear resistance of RC beams? J. Compos. Constr. 13, 514–534 (2009)

    Google Scholar 

  15. Pellegrino, C.; Vasic, M.: Assessment of design procedures for the use of externally bonded FRP composites in shear strengthening of reinforced concrete beams. Compos. Part B Eng. 45, 727–741 (2013)

    Google Scholar 

  16. Chen, J.F.; Teng, J.G.: Shear capacity of FRP-strengthened RC beams: FRP debonding. Constr. Build. Mater. 17, 27–41 (2003)

    Google Scholar 

  17. Chen, J.F.; Teng, J.G.: Shear capacity of fiber-reinforced polymer-strengthened reinforced concrete beams: fiber reinforced polymer rupture. J. Struct. Eng. 129, 615–625 (2003)

    Google Scholar 

  18. AS 5100.8: Australian Standard (AS). Bridge Design, Part 8: Rehabilitation and Strengthening of Existing Bridges. Standards Australia (AS), Sydney (2017)

    Google Scholar 

  19. EN 1998-3:2005: European Committee for Standardization. Eurocode 8—Design of Structures for Earthquake Resistance—Part 3: Assessment and Retrofitting of Buildings. European Committee for Standardization, Brussels (2005)

    Google Scholar 

  20. Adhikary, B.B.; Mutsuyoshi, H.; Ashraf, M.: Shear strengthening of reinforced concrete beams using fiber-reinforced polymer sheets with bonded anchorage. ACI Struct. J. 101, 660–668 (2004)

    Google Scholar 

  21. Cao, S.Y.; Chen, J.F.; Teng, J.G.; Hao, Z.; Chen, J.: Debonding in RC beams shear strengthened with complete FRP wraps. J. Compos. Constr. 9, 417–428 (2005)

    Google Scholar 

  22. Monti, G.; Liotta, M.: Tests and design equations for FRP-strengthening in shear. Constr. Build. Mater. 21, 799–809 (2007)

    Google Scholar 

  23. ACI 440.2R-08: Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures. American Concrete Institute, Farmington Hills, MI (2008)

    Google Scholar 

  24. fib-TG9.3: Externally Bonded FRP Reinforcement for RC Structures. International Federation for Structural Concrete, Lausanne (2001)

    Google Scholar 

  25. CNR-DT 200 R1: Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Existing Structures. National Research Council Advisory Committee on Technical Recommendations for Construction, Rome (2013)

    Google Scholar 

  26. DAfStb: Strengthening of Concrete Members with Adhesively Bonded Reinforcement. German Committee for Reinforced Concrete, Berlin (2013)

    Google Scholar 

  27. TR55: design guidance for strengthening concrete structures using fibre composite materials. the concrete society technical report TR55, Camberley (2012)

  28. D’Antino, T.; Triantafillou, T.C.: Accuracy of design-oriented formulations for evaluating the flexural and shear capacities of FRP-strengthened RC beams. Struct. Concr. 17, 425–442 (2016)

    Google Scholar 

  29. Pellegrino, C.; Modena, C.: Fiber reinforced polymer shear strengthening of reinforced concrete beams with transverse steel reinforcement. J. Compos. Constr. 6, 104–111 (2002)

    Google Scholar 

  30. Mostofinejad, D.; Hosseini, S.A.; Razavi, S.B.: Influence of different bonding and wrapping techniques on performance of beams strengthened in shear using CFRP reinforcement. Constr. Build. Mater. 116, 310–320 (2016)

    Google Scholar 

  31. Chen, G.M.; Teng, J.G.; Chen, J.F.: Process of debonding in RC beams shear-strengthened with FRP U-strips or side strips. Int. J. Solids Struct. 49, 1266–1282 (2012)

    Google Scholar 

  32. Lavorato, D.; Nuti, C.; Santini, S.: Experimental investigation of the shear strength of RC beams extracted from an old structure and strengthened by carbon FRP U-strips. Appl. Sci. 8, 1–29 (2018)

    Google Scholar 

  33. Ferreira, D.; Oller, E.; Marí, A.; Bairán, J.: Analysis of FRP shear strengthening solutions for reinforced concrete beams considering debonding failure. J. Compos. Constr. 20, 04016018 (2016)

    Google Scholar 

  34. Bellamkonda, S.A.: Modeling of shear strengthening of reinforced concrete beams retrofitted with externally bonded fiber reinforced polymers (2013)

  35. Tetta, Z.C.; Koutas, L.N.; Bournas, D.A.: Textile-reinforced mortar (TRM) versus fiber-reinforced polymers (FRP) in shear strengthening of concrete beams. Compos. Part B Eng. 77, 338–348 (2015)

    Google Scholar 

  36. Tetta, Z.C.; Bournas, D.A.: TRM vs FRP jacketing in shear strengthening of concrete members subjected to high temperatures. Compos. Part B Eng. 106, 190–205 (2016)

    Google Scholar 

  37. Breveglieri, M.; Aprile, A.; Barros, J.A.O.: RC beams strengthened in shear using the embedded through-section technique: experimental results and analytical formulation. Compos. Part B Eng. 89, 266–281 (2016)

    Google Scholar 

  38. Dias, S.J.E.; Barros, J.A.O.: NSM shear strengthening technique with CFRP laminates applied in high T cross section RC beams. Compos. Part B Eng. 114, 256–267 (2017)

    Google Scholar 

  39. Ary, M.I.; Kang, T.H.K.: Shear-strengthening of reinforced & prestressed concrete beams using FRP: part I—review of previous research. Int. J. Concr. Struct. Mater. 6, 41–47 (2012)

    Google Scholar 

  40. Bousselham, A.; Chaallal, O.: Shear strengthening reinforced concrete beams with fiber-reinforced polymer: assessment of influencing parameters and required research. ACI Struct. J. 101, 219–227 (2004)

    Google Scholar 

  41. Rousakis, T.C.; Saridaki, M.E.; Mavrothalassitou, S.A.; Hui, D.: Utilization of hybrid approach towards advanced database of concrete beams strengthened in shear with FRPs. Compos. Part B Eng. 85, 315–335 (2016)

    Google Scholar 

  42. Ma, S.; Muhamad Bunnori, N.; Choong, K.K.; Zhao, R.: Models reviewed for predicting CFRP shear contribution of strengthened reinforced concrete box beam. KSCE J. Civ. Eng. 23, 3644–3659 (2019)

    Google Scholar 

  43. Ji, C.; Li, W.; Hu, C.; Xing, F.: Data analysis on fiber-reinforced polymer shear contribution of reinforced concrete beam shear strengthened with U-jacketing fiber-reinforced polymer composites. J. Reinf. Plast. Compos. 36, 98–120 (2017)

    Google Scholar 

  44. Pansuk, W.; Sato, Y.: Shear mechanism of reinforced concrete T-Beams with stirrups. J. Adv. Concr. Technol. 5, 395–408 (2007)

    Google Scholar 

  45. Foster, R.M.; Brindley, M.; Lees, J.M.; Ibell, T.J.; Morley, C.T.; Darby, A.P.; Evernden, M.C.: Experimental investigation of reinforced concrete T-beams strengthened in shear with externally bonded CFRP sheets. J. Compos. Constr. 21, 1–13 (2017)

    Google Scholar 

  46. European Committee for Standardization (CEN): Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings. European Committee for Standardization, Brussels (2004)

    Google Scholar 

  47. Li, W.; Leung, C.K.Y.: Effect of shear span-depth ratio on mechanical performance of RC beams strengthened in shear with U-wrapping FRP strips. Compos. Struct. 177, 141–157 (2017)

    Google Scholar 

  48. Hu, B.; Wu, Y.F.: Effect of shear span-to-depth ratio on shear strength components of RC beams. Eng. Struct. 168, 770–783 (2018)

    Google Scholar 

  49. Karbhari, V.M.; Niu, H.; Sikorsky, C.: Review and comparison of fracture mechanics-based bond strength models for FRP-strengthened structures. J. Reinf. Plast. Compos. 25, 1757–1794 (2006)

    Google Scholar 

  50. Chen, J.F.; Teng, J.G.: Anchorage strength models for FRP and steel plates bonded to concrete. J. Struct. Eng. 127, 784–791 (2001)

    Google Scholar 

  51. Yuan, H.; Teng, J.G.; Seracino, R.; Wu, Z.S.; Yao, J.: Full-range behavior of FRP-to-concrete bonded joints. Eng. Struct. 26, 553–565 (2004)

    Google Scholar 

  52. Li, W.; Li, J.; Ren, X.; Leung, C.K.Y.; Xing, F.: Coupling effect of concrete strength and bonding length on bond behaviors of fiber reinforced polymer–concrete interface. J. Reinf. Plast. Compos. 34, 421–432 (2015)

    Google Scholar 

  53. Alam, M.S.; Hussein, A.: Size effect on shear strength of FRP reinforced concrete beams without stirrups. J. Compos. Constr. 17, 507–516 (2012)

    Google Scholar 

  54. Bažant, Z.P.; Yu, Q.: Does strength test satisfying code requirement for nominal strength justify ignoring size effect in shear? ACI Struct. J. 106, 14–19 (2009)

    Google Scholar 

  55. Yu, Q.; Bažant, Z.P.: Can stirrups suppress size effect on shear strength of RC beams? J. Struct. Eng. 137, 607–617 (2011)

    Google Scholar 

  56. Leung, C.K.Y.; Chen, Z.; Lee, S.; Ng, M.; Xu, M.; Tang, J.: Effect of size on the failure of geometrically similar concrete beams strengthened in shear with FRP strips. J. Compos. Constr. 11, 487–496 (2007)

    Google Scholar 

  57. Bae, S.-W.; Tann, B.D.; Belarbi, A.: Size effect of reinforced concrete beams strengthened in shear with externally bonded CFRP sheets. In: Proceedings of the 6th International Conference on FRP Composites in Civil Engineering (CICE 2012), pp. 1–8 (2012)

  58. Nguyen-Minh, L.; Rovňák, M.: Size effect in uncracked and pre-cracked reinforced concrete beams shear-strengthened with composite jackets. Compos. Part B Eng. 78, 361–376 (2015)

    Google Scholar 

  59. Triantafillou, T.C.: Shear strengthening of reinforced concrete beams using epoxy-bonded FRP composites. ACI Struct. J. 95, 107–115 (1998)

    Google Scholar 

  60. Bousselham, A.; Chaallal, O.: Effect of transverse steel and shear span on the performance of RC beams strengthened in shear with CFRP. Compos. Part B Eng. 37, 37–46 (2006)

    Google Scholar 

  61. Bousselham, A.; Chaallal, O.: Behavior of reinforced concrete T-beams strengthened in shear with carbon fiber-reinforced polymer—an experimental study. ACI Struct. J. 103, 339–347 (2006)

    Google Scholar 

  62. Jayaprakash, J.; Samad, A.A.A.; Abbasvoch, A.A.: Investigation on effects of variables on shear capacity of precracked RC T-beams with externally bonded bi-directional CFRP discrete strips. J. Compos. Mater. 44, 241–261 (2010)

    Google Scholar 

  63. Kim, Y.; Quinn, K.; Ghannoum, W.M.; Jirsa, J.O.: Strengthening of reinforced concrete T-beams using anchored CFRP materials. ACI Struct. J. 111, 1027–1036 (2014)

    Google Scholar 

  64. Nguyen-Minh, L.; Vo-Le, D.; Tran-Thanh, D.; Pham, T.M.; Ho-Huu, C.; Rovňák, M.: Shear capacity of unbonded post-tensioned concrete T-beams strengthened with CFRP and GFRP U-wraps. Compos. Struct. 184, 1011–1029 (2018)

    Google Scholar 

  65. Deniaud, C.; Cheng, J.J.R.: Shear behavior of reinforced concrete T-beams with externally bonded fiber-reinforced polymer sheets. ACI Struct. J. 98, 386–394 (2001)

    Google Scholar 

  66. Chaallal, O.; Shahawy, M.; Hassan, M.: Performance of reinforced concrete T-girders strengthened in shear with carbon fiber-reinforced polymer fabric. ACI Struct. J. 99, 335–343 (2002)

    Google Scholar 

  67. Panda, K.C.; Bhattacharyya, S.K.; Barai, S.V.: Effect of transverse steel on the performance of RC T-beams strengthened in shear zone with GFRP sheet. Constr. Build. Mater. 41, 79–90 (2013)

    Google Scholar 

  68. Bourget, S.; El-Saikaly, G.; Chaallal, O.: Behavior of reinforced concrete T-beams strengthened in shear using closed carbon fiber-reinforced polymer stirrups made of laminates and ropes. ACI Struct. J. 114, 1087–1098 (2017)

    Google Scholar 

  69. Kim, Y.; Ghannoum, W.M.; Jirsa, J.O.: Shear behavior of full-scale reinforced concrete T-beams strengthened with CFRP strips and anchors. Constr. Build. Mater. 94, 1–9 (2015)

    Google Scholar 

  70. Godat, A.; Chaallal, O.: Strut-and-tie method for externally bonded FRP shear-strengthened large-scale RC beams. Compos. Struct. 99, 327–338 (2013)

    Google Scholar 

  71. Panigrahi, S.K.; Deb, A.; Bhattacharyya, S.K.: Modes of failure in shear deficient RC T-beams strengthened with FRP. J. Compos. Constr. 20, 1–9 (2016)

    Google Scholar 

  72. Panda, K.C.; Bhattacharyya, S.K.; Barai, S.V.: Shear strengthening of RC T-beams with externally side bonded GFRP sheet. J. Reinf. Plast. Compos. 30, 1139–1154 (2011)

    Google Scholar 

  73. Mofidi, A.; Chaallal, O.: Shear strengthening of RC beams with externally bonded FRP Composites: effect of strip-width-to-strip-spacing ratio. J. Compos. Constr. 15, 732–742 (2011)

    Google Scholar 

  74. Koutas, L.; Triantafillou, T.C.: Use of anchors in shear strengthening of reinforced concrete T-beams with FRP. J. Compos. Constr. 17, 101–107 (2013)

    Google Scholar 

  75. Mofidi, A.; Chaallal, O.; Benmokrane, B.; Neale, K.: Performance of end-anchorage systems for RC beams strengthened in shear with epoxy-bonded FRP. J. Compos. Constr. 16, 322–331 (2011)

    Google Scholar 

  76. Hoult, N.A.; Lees, J.M.: Efficient CFRP strap configurations for the shear strengthening of reinforced concrete T-Beams. J. Compos. Constr. 13, 45–52 (2009)

    Google Scholar 

  77. Bae, S.-W.; Belarbi, A.: Behavior of various anchorage systems used for shear strengthening of concrete structures with externally bonded FRP sheets. J. Bridg. Eng. 18, 837–847 (2012)

    Google Scholar 

  78. El-Saikaly, G.; Godat, A.; Chaallal, O.: New anchorage technique for FRP shear-strengthened RC T-beams using CFRP rope. J. Compos. Constr. 19, 04014064 (2014)

    Google Scholar 

  79. Ozden, S.; Atalay, H.M.; Akpinar, E.; Erdogan, H.; Vulaş, Y.Z.: Shear strengthening of reinforced concrete T-beams with fully or partially bonded fibre-reinforced polymer composites. Struct. Concr. 15, 229–239 (2014)

    Google Scholar 

  80. Belarbi, A.; Bae, S.-W.; Brancaccio, A.: Behavior of full-scale RC T-beams strengthened in shear with externally bonded FRP sheets. Constr. Build. Mater. 32, 27–40 (2012)

    Google Scholar 

  81. Oller, E.; Pujol, M.; Marí, A.: Contribution of externally bonded FRP shear reinforcement to the shear strength of RC beams. Compos. Part B Eng. 164, 235–248 (2019)

    Google Scholar 

  82. Chen, G.M.; Zhang, Z.; Li, Y.L.; Li, X.Q.; Zhou, C.Y.: T-section RC beams shear-strengthened with anchored CFRP U-strips. Compos. Struct. 144, 57–79 (2016)

    Google Scholar 

  83. El-Saikaly, G.; Chaallal, O.; Benmokrane, B.: Comparison of anchorage systems for RC T-beams strengthened in shear with EB-CFRP. In: 6th Asia-Pacific Conference on FRP in Structures (APFIS2017), pp. 1–5. Singapore (2017)

  84. Alam, M.A.; Al Riyami, K.: Shear strengthening of reinforced concrete beam using natural fibre reinforced polymer laminates. Constr. Build. Mater. 162, 683–696 (2018)

    Google Scholar 

  85. Galal, K.; Mofidi, A.: Shear strengthening of RC T-Beams using mechanically anchored unbonded dry carbon fiber sheets. J. Perform. Constr. Facil. 24, 31–39 (2010)

    Google Scholar 

  86. Randl, N.; Harsányi, P.: Developing optimized strengthening systems for shear-deficient concrete members. Struct. Concr. 19, 116–128 (2018)

    Google Scholar 

  87. Qin, S.; Dirar, S.; Yang, J.; Chan, A.H.C.; Elshafie, M.: CFRP shear strengthening of reinforced-concrete T-beams with corroded shear links. J. Compos. Constr. 19, 04014081 (2015)

    Google Scholar 

  88. Altin, S.; Anil, Ö.; Kopraman, Y.; Mertoǧlu, Ç.; Kara, M.E.: Improving shear capacity and ductility of shear-deficient RC beams using CFRP strips. J. Reinf. Plast. Compos. 29, 2975–2991 (2010)

    Google Scholar 

  89. Zhou, C.; Ren, D.; Cheng, X.: Shear-strengthening of RC continuous T-beams with spliced CFRP U-strips around bars against flange top. Struct. Eng. Mech. 64, 135–143 (2017)

    Google Scholar 

  90. Mofidi, A.; Chaallal, O.: Tests and design provisions for reinforced-concrete beams strengthened in shear using FRP sheets and strips. Int. J. Concr. Struct. Mater. 8, 117–128 (2014)

    Google Scholar 

  91. Altin, S.; Anil, Ö.; Toptas, T.; Kara, M.E.: Retrofitting of shear damaged RC beams using CFRP strips. Steel Compos. Struct. 11, 207–223 (2011)

    Google Scholar 

  92. Panda, K.C.; Bhattacharyya, S.K.; Barai, S.V.: Shear strengthening effect by bonded GFRP strips and transverse steel on RC T-beams. Struct. Eng. Mech. 47, 75–98 (2013)

    Google Scholar 

  93. El-Maaddawy, T.; Chekfeh, Y.: Shear strengthening of T-beams with corroded stirrups using composites. ACI Struct. J. 110, 779–789 (2013)

    Google Scholar 

  94. Lee, H.K.; Cheong, S.H.; Ha, S.K.; Lee, C.G.: Behavior and performance of RC T-section deep beams externally strengthened in shear with CFRP sheets. Compos. Struct. 93, 911–922 (2011)

    Google Scholar 

  95. Mofidi, A.; Thivierge, S.; Chaallal, O.; Shao, Y.: Behavior of reinforced concrete beams strengthened in shear using L-shaped CFRP plates: experimental investigation. J. Compos. Constr. 18, 04013033 (2014)

    Google Scholar 

  96. Dirar, S.; Lees, J.; Morley, C.: Precracked reinforced concrete T-Beams repaired in shear with bonded carbon fiber-reinforced polymer sheets. ACI Struct. J. 109, 215–224 (2012)

    Google Scholar 

  97. El-Maaddawy, T.; Chekfeh, Y.: Retrofitting of severely shear-damaged concrete T-beams using externally bonded composites and mechanical end anchorage. J. Compos. Constr. 16, 693–704 (2012)

    Google Scholar 

  98. Panigrahi, A.K.; Biswal, K.C.; Barik, M.R.: Strengthening of shear deficient RC T-beams with externally bonded GFRP sheets. Constr. Build. Mater. 57, 81–91 (2014)

    Google Scholar 

  99. Gamino, A.L.; Sousa, J.L.A.O.; Manzoli, O.L.; Bittencourt, T.N.: R/C structures strengthened with CFRP Part II: analysis of shear models. Rev. IBRACON Estruturas e Mater. 3, 24–49 (2010)

    Google Scholar 

  100. Deniaud, C.; Roger Cheng, J.J.: Reinforced concrete T-beams strengthened in shear with fiber reinforced polymer sheets. J. Compos. Constr. 7, 302–310 (2003)

    Google Scholar 

  101. Khalifa, A.; Nanni, A.: Improving shear capacity of existing RC T-section beams using CFRP composites. Cem. Concr. Compos. 22, 165–174 (2000)

    Google Scholar 

  102. Chajes, M.J.; Jansuzka, T.F.; Mertz, D.R.; Thomson, T.A.; Finch, W.W.: Shear strengthening of reinforced concrete beams using externally applied composite fabrics. ACI Struct. J. 92, 295–303 (1995)

    Google Scholar 

  103. Frederick, F.F.R.; Sharma, U.K.; Gupta, V.K.: Influence of end anchorage on shear strengthening of reinforced concrete beams using CFRP composites. Curr. Sci. 112, 973–981 (2017)

    Google Scholar 

  104. Chaallal, O.; Mofidi, A.; Benmokrane, B.; Neale, K.: Embedded through-section FRP rod method for shear strengthening of RC beams: performance and comparison with existing techniques. J. Compos. Constr. 15, 374–383 (2011)

    Google Scholar 

  105. Farghal, O.A.: Shear strengthening of R.C. T-beams by means of CFRP sheets. J. Eng. Sci. 40, 1293–1307 (2012)

    Google Scholar 

  106. Jumaah, R.; Kalfat, R.; Al-mahaidi, R.; Abdouka, K.: Anchorage systems used in FRP strengthening of concrete members. In: High Tech Concrete: Where Technology and Engineering Meet (2018)

Download references

Acknowledgements

The authors would like to thank the National Institute of Technology, Rourkela, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapnasarit Kar.

Ethics declarations

Conflict of interest

The authors declare no possible conflict of interest regarding the research, authorship and publication of this article.

Appendix

Appendix

See Table 3.

Table 3 Experimental database

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kar, S., Biswal, K.C. Shear Strengthening of Reinforced Concrete T-Beams by Using Fiber-Reinforced Polymer Composites: A Data Analysis. Arab J Sci Eng 45, 4203–4234 (2020). https://doi.org/10.1007/s13369-020-04412-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04412-x

Keywords

Navigation