Skip to main content
Log in

Synthesis and Characterization of Ti–Fe Oxide Nanomaterials: Adsorption–Degradation of Methyl Orange Dye

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Organic solvent-free impregnation method was used to synthesize titanium-iron oxides (TIOs) nanomaterial. The physical properties of synthesized TIOs materials were characterized by XRD, SEM–EDX, BET, UV–Vis, and FTIR analytical techniques. The appearance of iron oxide (IO) on SEM image, XRD, and EDX spectra, the redshift on UV–Vis spectra of TIO compared to titanium oxide (TO), and intensity reduction in FTIR spectra proves the good impregnation of IO in TO lattice. The Langmuir and Dubinin–Radushkevich adsorption isotherm test in the dark show the domination of physical adsorption. Furthermore, the Flory–Huggins isotherm model that has \(\Delta G\) = −11.40 kJ/mol and Fowler–Guggenheim model that has \(w\) = −106.5 kJ/mol confirm the spontaneity of the reaction and the presence of adsorbate–adsorbate repulsive interaction, respectively. The passing of the linear Weber–Morris intraparticle adsorption–diffusion plot through the origin and well-fitting of its coefficient of determination (R2) value relative to pseudo-first-order indicates the domination of adsorption–diffusion mechanism. On the methyl orange degradation experiment, as the percentage of IO increases from 4 to 12, its degradation efficiency decreases, i.e., TIO with 4% calcined at 500 °C (TIO-4) has higher degradation efficiency with k values of 0.03025.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Basheer, A.A.: Chemical chiral pollution: impact on the society and science and need of the regulations in the 21st century. Chirality 30, 402–406 (2018). https://doi.org/10.1002/chir.22808

    Article  Google Scholar 

  2. Basheer, A.A.; Ali, I.: Stereoselective uptake and degradation of (±)-o, p-DDD pesticide stereomers in water-sediment system. Chirality 30, 1088–1095 (2018). https://doi.org/10.1002/chir.22989

    Article  Google Scholar 

  3. Basheer, A.A.: New generation nano-adsorbents for the removal of emerging contaminants in water. J. Mol. Liq. 261, 583–593 (2018). https://doi.org/10.1016/j.molliq.2018.04.021

    Article  Google Scholar 

  4. Ali, I.: New generation adsorbents for water treatment. Chem. Rev. 112, 5073–5091 (2012). https://doi.org/10.1021/cr300133d

    Article  Google Scholar 

  5. Ali, I.; Basheer, A.A.; Kucherova, A.; Memetov, N.; Pasko, T.; Ovchinnikov, K.; Pershin, V.; Kuznetsov, D.; Galunin, E.; Grachev, V.; Tkachev, A.: Advances in carbon nanomaterials as lubricants modifiers. J. Mol. Liq. 279, 251–266 (2019). https://doi.org/10.1016/j.molliq.2019.01.113

    Article  Google Scholar 

  6. Ali, I.; Basheer, A.A.; Mbianda, X.Y.; Burakov, A.; Galunin, E.; Burakova, I.; Mkrtchyan, E.; Tkachev, A.; Grachev, V.: Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environ. Int. 127, 160–180 (2019). https://doi.org/10.1016/j.envint.2019.03.029

    Article  Google Scholar 

  7. Burakova, E.A.; Dyachkova, T.P.; Rukhov, A.V.; Tugolukov, E.N.; Galunin, E.V.; Tkachev, A.G.; Basheer, A.A.; Ali, I.: Novel and economic method of carbon nanotubes synthesis on a nickel magnesium oxide catalyst using microwave radiation. J. Mol. Liq. 253, 340–346 (2018). https://doi.org/10.1016/j.molliq.2018.01.062

    Article  Google Scholar 

  8. Ali, I.; Al-Othman, Z.A.; Alwarthan, A.; Asim, M.; Khan, T.A.: Removal of arsenic species from water by batch and column operations on bagasse fly ash. Environ. Sci. Pollut. Res. (2014). https://doi.org/10.1007/s11356-013-2235-3

    Article  Google Scholar 

  9. Ali, I.; Jain, C.K.: Advances in arsenic speciation techniques. Int. J. Environ. Anal. Chem. 84, 947–964 (2004). https://doi.org/10.1080/03067310410001729637

    Article  Google Scholar 

  10. Ali, I.; Alothman, Z.A.; Sanagi, M.M.: Green synthesis of iron nano-impregnated adsorbent for fast removal of fluoride from water. J. Mol. Liq. 211, 457–465 (2015). https://doi.org/10.1016/j.molliq.2015.07.034

    Article  Google Scholar 

  11. Ali, I.; Khan, T.A.; Asim, M.: Removal of arsenate from groundwater by electrocoagulation method. Environ. Sci. Pollut. Res. 19, 1668–1676 (2012). https://doi.org/10.1007/s11356-011-0681-3

    Article  Google Scholar 

  12. Ali, I.; AL-Othman, Z.A.; Alwarthan, A.: Molecular uptake of congo red dye from water on iron composite nano particles. J. Mol. Liq. 224, 171–176 (2016). https://doi.org/10.1016/j.molliq.2016.09.108

    Article  Google Scholar 

  13. Ali, I.; Alothman, Z.A.; Alwarthan, A.: Uptake of propranolol on ionic liquid iron nanocomposite adsorbent: kinetic, thermodynamics and mechanism of adsorption. J. Mol. Liq. 236, 205–213 (2017). https://doi.org/10.1016/j.molliq.2017.04.028

    Article  Google Scholar 

  14. Ali, I.; Aboul-Enein, H.Y.: Speciation of arsenic and chromium metal ions by reversed phase high performance liquid chromatography. Chemosphere 48, 275–278 (2002). https://doi.org/10.1016/S0045-6535(02)00085-1

    Article  Google Scholar 

  15. Ali, I.; AL-Othman, Z.A.; Alharbi, O.M.L.: Uptake of pantoprazole drug residue from water using novel synthesized composite iron nano adsorbent. J. Mol. Liq. 218, 465–472 (2016). https://doi.org/10.1016/j.molliq.2016.02.088

    Article  Google Scholar 

  16. Ali, I.; Alothman, Z.A.; Al-Warthan, A.: Sorption, kinetics and thermodynamics studies of atrazine herbicide removal from water using iron nano-composite material. Int. J. Environ. Sci. Technol. 13, 733–742 (2016). https://doi.org/10.1007/s13762-015-0919-6

    Article  Google Scholar 

  17. Gallego-urrea, J.A.; Hammes, J.; Cornelis, G.; Hassellöv, M.: Coagulation and sedimentation of gold nanoparticles and illite in model natural waters: in fluence of initial particle concentration. IMPACT 3–4, 67–74 (2016). https://doi.org/10.1016/j.impact.2016.10.004

    Article  Google Scholar 

  18. Tang, X.; Zheng, H.; Teng, H.; Sun, Y.; Guo, J.; Xie, W.; Yang, Q.; Chen, W.: Chemical coagulation process for the removal of heavy metals from water: a review. Desalin. Water Treat. 57, 1733–1748 (2016). https://doi.org/10.1080/19443994.2014.977959

    Article  Google Scholar 

  19. Wang, D.K.; Elma, M.; Motuzas, J.; Hou, W.; Xie, F.: Rational design and synthesis of molecular-sieving, photocatalytic, hollow fiber membranes for advanced water treatment applications. J. Memb. Sci. 524, 163–173 (2017). https://doi.org/10.1016/j.memsci.2016.10.052

    Article  Google Scholar 

  20. Charles, J.; Bradu, C.; Morin-Crini, N.; Sancey, B.; Winterton, P.; Torri, G.; Badot, P.-M.; Crini, G.: Pollutant removal from industrial discharge water using individual and combined effects of adsorption and ion-exchange processes: chemical abatement. J. Saudi Chem. Soc. 20, 185–194 (2016). https://doi.org/10.1016/j.jscs.2013.03.007

    Article  Google Scholar 

  21. Pype, M.; Lawrence, M.G.; Keller, J.; Gernjak, W.: Reverse osmosis integrity monitoring in water reuse: the challenge to verify virus removal: A review. Water Res. 98, 384–395 (2016). https://doi.org/10.1016/j.watres.2016.04.040

    Article  Google Scholar 

  22. Chen, F.; Ho, P.; Ran, R.; Chen, W.; Si, Z.; Wu, X.; Weng, D.; Huang, Z.; Lee, C.: Synergistic effect of CeO2 modified TiO2 photocatalyst on the enhancement of visible light photocatalytic performance. J. Alloy. Compd. 714, 560–566 (2017). https://doi.org/10.1016/j.jallcom.2017.04.138

    Article  Google Scholar 

  23. Rashidi Nodeh, H.; Wan Ibrahim, W.A.; Ali, I.; Sanagi, M.M.: Development of magnetic graphene oxide adsorbent for the removal and preconcentration of As(III) and As(V) species from environmental water samples. Environ. Sci. Pollut. Res. 23, 9759–9773 (2016). https://doi.org/10.1007/s11356-016-6137-z

    Article  Google Scholar 

  24. Ali, I.: Microwave assisted economic synthesis of multi walled carbon nanotubes for arsenic species removal in water: batch and column operations. J. Mol. Liq. 271, 677–685 (2018). https://doi.org/10.1016/j.molliq.2018.09.021

    Article  Google Scholar 

  25. Ali, I.; Alharbi, O.M.L.; Tkachev, A.; Galunin, E.; Burakov, A.; Grachev, V.A.: Water treatment by new-generation graphene materials: hope for bright future. Environ. Sci. Pollut. Res. 25, 7315–7329 (2018). https://doi.org/10.1007/s11356-018-1315-9

    Article  Google Scholar 

  26. Ali, I.; Alharbi, O.M.L.; Alothman, Z.A.; Alwarthan, A.: Facile and eco-friendly synthesis of functionalized iron nanoparticles for cyanazine removal in water. Colloids Surf. B. Biointerfaces 171, 606–613 (2018). https://doi.org/10.1016/j.colsurfb.2018.07.071

    Article  Google Scholar 

  27. Ali, I.; Alharbi, O.M.L.; Alothman, Z.A.; Badjah, A.Y.: Kinetics, thermodynamics, and modeling of amido black dye photodegradation in water using co/TiO2 nanoparticles. Photochem. Photobiol. 94, 935–941 (2018). https://doi.org/10.1111/php.12937

    Article  Google Scholar 

  28. Ali, I.; Alharbi, O.M.L.; Alothman, Z.A.; Al-Mohaimeed, A.M.; Alwarthan, A.: Modeling of fenuron pesticide adsorption on CNTs for mechanistic insight and removal in water. Environ. Res. 170, 389–397 (2019). https://doi.org/10.1016/j.envres.2018.12.066

    Article  Google Scholar 

  29. Alothman, Z.A.; Badjah, A.Y.; Ali, I.: Facile synthesis and characterization of multi walled carbon nanotubes for fast and effective removal of 4-tert-octylphenol endocrine disruptor in water. J. Mol. Liq. 275, 41–48 (2019). https://doi.org/10.1016/j.molliq.2018.11.049

    Article  Google Scholar 

  30. Ali, I.; Al-Othman, Z.A.; Al-Warthan, A.: Removal of secbumeton herbicide from water on composite nanoadsorbent. Desalin. Water Treat. 57, 10409–10421 (2016). https://doi.org/10.1080/19443994.2015.1041164

    Article  Google Scholar 

  31. Wu, L.; Yan, H.; Xiao, J.; Li, X.; Wang, X.; Zhao, T.: Characterization and photocatalytic properties of nano-Fe2O3–TiO2 composites prepared through the gaseous detonation method. Ceram. Int. 43, 14334–14339 (2017). https://doi.org/10.1016/j.ceramint.2017.07.189

    Article  Google Scholar 

  32. Mianxin, S.; Liang, B.; Tianliang, Z.; Xiaoyong, Z.: Surface ζ potential and photocatalytic activity of rare earths doped TiO2. J. Rare Earths 26, 693–699 (2008). https://doi.org/10.1016/S1002-0721(08)60165-9

    Article  Google Scholar 

  33. Wang, D.; Wang, Y.; Li, X.; Luo, Q.; An, J.; Yue, J.: Sunlight photocatalytic activity of polypyrrole: TiO2 nanocomposites prepared by ‘in situ’ method. Catal. Commun. 9, 1162–1166 (2008). https://doi.org/10.1016/j.catcom.2007.10.027

    Article  Google Scholar 

  34. Macák, J.M.; Tsuchiya, H.; Ghicov, A.; Schmuki, P.: Dye-sensitized anodic TiO2 nanotubes. Electrochem. Commun. 7, 1133–1137 (2005). https://doi.org/10.1016/j.elecom.2005.08.013

    Article  Google Scholar 

  35. An, H.; Zhou, J.; Li, J.; Zhu, B.; Wang, S.; Zhang, S.; Wu, S.; Huang, W.: Deposition of Pt on the stable nanotubular TiO2 and its photocatalytic performance. Catal. Commun. 11, 175–179 (2009). https://doi.org/10.1016/j.catcom.2009.09.020

    Article  Google Scholar 

  36. Wang, T.; Yang, G.; Liu, J.; Yang, B.; Ding, S.; Yan, Z.; Xiao, T.: Orthogonal synthesis, structural characteristics, and enhanced visible-light photocatalysis of mesoporous Fe2O3/TiO2 heterostructured microspheres. Appl. Surf. Sci. 311, 314–323 (2014)

    Article  Google Scholar 

  37. Wang, Z.; Liu, Y.; Huang, B.; Dai, Y.; Lou, Z.: Progress on extending the light absorption spectra of photocatalysts. PCCP 2, 2758–2774 (2014). https://doi.org/10.1039/c3cp53817f

    Article  Google Scholar 

  38. Mamba, G.; Mishra, A.K.: Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B Environ. 198, 347–377 (2016). https://doi.org/10.1016/j.apcatb.2016.05.052

    Article  Google Scholar 

  39. Li, X.; Yu, J.; Jaroniec, M.: Hierarchical photocatalysts. Chem. Soc. Rev. 45, 2603–2636 (2016). https://doi.org/10.1039/C5CS00838G

    Article  Google Scholar 

  40. Wahyuningsih, S.; Ramelan, A.H.; Prasetyawati, L.; Saputri, L.N.M.Z.; Ichsan, S.; Kristiawan, Y.R.: The influence of Fe2O3 addition on the TiO2 structure and photoactivity properties. IOP Conf. Ser. Mater. Sci. Eng. 333, 012033 (2018). https://doi.org/10.1088/1757-899X/333/1/012033

    Article  Google Scholar 

  41. Abebe, B.; Ananda Murthy, H.C.: Synthesis and characterization of Ti–Fe oxide nanomaterials for lead removal. J. Nanomater. 2018, 1–10 (2018). https://doi.org/10.1155/2018/9651039

    Article  Google Scholar 

  42. Sharma, B.; Boruah, P.K.; Yadav, A.; Das, M.R.: TiO2–Fe2O3 nanocomposite heterojunction for superior charge separation and the photocatalytic inactivation of pathogenic bacteria in water under direct sunlight irradiation. J. Environ. Chem. Eng. 6, 134–145 (2018). https://doi.org/10.1016/j.jece.2017.11.025

    Article  Google Scholar 

  43. Shojaie, A.; Fattahi, M.; Jorfi, S.; Ghasemi, B.: Synthesis and evaluations of—Fe3O4–TiO2–Ag nanocomposites for photocatalytic degradation of 4-chlorophenol (4-CP): effect of Ag and Fe compositions. Int. J. Ind. Chem. 9, 24–26 (2018)

    Article  Google Scholar 

  44. Jin, H.; Zhao, X.; Wu, Z.; Cao, C.; Guo, L.: Supercritical water synthesis of nano-particle catalyst on TiO2 and its application in supercritical water gasification of biomass. J. Exp. Nanosci. 12, 72–82 (2017). https://doi.org/10.1080/17458080.2016.1262066

    Article  Google Scholar 

  45. Lin, Y.P.; Mehrvar, M.: Photocatalytic treatment of an actual confectionery wastewater using Ag/TiO2/Fe2O3: optimization of photocatalytic reactions using surface response methodology. Catalysts 8, 409 (2018)

    Article  Google Scholar 

  46. Habibi, M.H.; Karimi, B.: Application of impregnation combustion method for fabrication of nanostructure CuO/ZnO composite oxide: XRD, FESEM, DRS and FTIR study. J. Ind. Eng. Chem. 20, 1566–1570 (2014). https://doi.org/10.1016/j.jiec.2013.07.048

    Article  Google Scholar 

  47. Mirmasoomi, S.R.; Mehdipour Ghazi, M.; Galedari, M.: Photocatalytic degradation of diazinon under visible light using TiO2/Fe2O3 nanocomposite synthesized by ultrasonic-assisted impregnation method. Sep. Purif. Technol. 175, 418–427 (2017). https://doi.org/10.1016/j.seppur.2016.11.021

    Article  Google Scholar 

  48. Dai, X.; Lu, G.; Hu, Y.; Xie, X.; Wang, X.; Sun, J.: Reversible redox behavior of Fe2O3/TiO2 composites in the gaseous photodegradation process. Ceram. Int. 45, 13187–13192 (2019). https://doi.org/10.1016/j.ceramint.2019.03.255

    Article  Google Scholar 

  49. Sun, B.; Zhou, W.; Li, H.; Ren, L.; Qiao, P.; Xiao, F.; Wang, L.; Jiang, B.; Fu, H.: Magnetic Fe2O3/mesoporous black TiO2 hollow sphere heterojunctions with wide-spectrum response and magnetic separation. Appl. Catal. B Environ. 221, 235–242 (2018). https://doi.org/10.1016/j.apcatb.2017.09.023

    Article  Google Scholar 

  50. Singh, J.; Sharma, S.; Basu, S.: Synthesis of Fe2O3/TiO2 monoliths for the enhanced degradation of industrial dye and pesticide via photo-Fenton catalysis. J. Photochem. Photobiol. C. 376, 32–42 (2019). https://doi.org/10.1016/j.jphotochem.2019.03.004

    Article  Google Scholar 

  51. Abbas, N.; Shao, G.N.; Haider, M.S.; Imran, S.M.; Soo, S.; Taik, H.: Sol–gel synthesis of TiO2–Fe2O3 systems: effects of Fe2O3 content and their photocatalytic properties. J. Ind. Eng. Chem. 39, 112–120 (2016). https://doi.org/10.1016/j.jiec.2016.05.015

    Article  Google Scholar 

  52. Alder, C.M.; Hayler, J.D.; Henderson, R.K.; Redman, A.M.; Shukla, L.; Shuster, L.E.; Sneddon, H.F.: Updating and further expanding GSK’s solvent sustainability guide. Green Chem. 18, 3879–3890 (2016). https://doi.org/10.1039/C6GC00611F

    Article  Google Scholar 

  53. Abebe, B.; Taddesse, A.M.; Kebede, T.; Teju, E.; Diaz, I.: Fe–Al–Mn ternary oxide nanosorbent: synthesis, characterization and phosphate sorption property. J. Environ. Chem. Eng. 5, 1330–1340 (2017). https://doi.org/10.1016/j.jece.2017.02.026

    Article  Google Scholar 

  54. Fu, Y.; Wei, Q.; Wang, X.; Shu, H.: Porous hollow α-Fe2O3@TiO2 core–shell nanospheres for superior lithium/sodium storage capability. J. Mater. Chem. A Mater. Energy Sustain. 3, 13807–13818 (2015). https://doi.org/10.1039/C5TA02994E

    Article  Google Scholar 

  55. Saha, N.; Sarkar, A.; Ghosh, A.B.; Dutta, A.K.; Bhadu, G.R.; Paul, P.; Adhikary, B.: Highly active spherical amorphous MoS 2: facile synthesis and application in photocatalytic degradation of rose bengal dye and hydrogenation of nitroarenes. RSC Adv. 5, 88848–88856 (2015). https://doi.org/10.1039/C5RA19442C

    Article  Google Scholar 

  56. Bayram, K.; Gedik, N.; Selin, P.; Serhan, A.: Band gap engineering and modifying surface of TiO2 nanostructures by Fe2O3 for enhanced-performance of dye sensitized solar cell. Mat. Sci. Semicon. Proc. 31, 363–371 (2015). https://doi.org/10.1016/j.mssp.2014.12.020

    Article  Google Scholar 

  57. Subramonian, W.; Wu, T.Y.; Chai, S.: Using one-step facile and solvent-free mechanochemical process to synthesize photoactive Fe2O3–TiO2 for treating industrial wastewater. J. Alloys Compd. 695, 496–507 (2017). https://doi.org/10.1016/j.jallcom.2016.10.006

    Article  Google Scholar 

  58. Jamalluddin, N.A.; Abdullah, A.Z.: Reactive dye degradation by combined Fe(III)/TiO2 catalyst and ultrasonic irradiation: effect of Fe(III) loading and calcination temperature. Ultrason. Sonochem. 18, 669–678 (2011). https://doi.org/10.1016/j.ultsonch.2010.09.004

    Article  Google Scholar 

  59. Boehm, H.P.: Chemical identification of surface groups. Adv. Catal. 16, 179–274 (1966). https://doi.org/10.1016/s0360-0564(08)60354-5

    Article  Google Scholar 

  60. Bendjabeur, S.; Zouaghi, R.; Kaabeche, O.N.H.; Sehili, T.: Parameters affecting adsorption and photocatalytic degradation behavior of gentian violet under UV irradiation with several kinds of TiO2 as a photocatalyst. J. Chem. React. Eng, Int (2017). https://doi.org/10.1515/ijcre-2016-0206

    Book  Google Scholar 

  61. Ohtani, B.: Photocatalysis A to Z—what we know and what we do not know in a scientific sense. J. Photochem. Photobiol. C: Photochem Rev. 11, 157–178 (2010). https://doi.org/10.1016/j.jphotochemrev.2011.02.001

    Article  Google Scholar 

  62. Alipanahpour, E.; Ghaedi, M.; Asfaram, A.; Mehrabi, F.: Ultrasonics sonochemistry application of modificated magnetic nanomaterial for optimization of ultrasound-enhanced removal of Pb2+ ions from aqueous solution under experimental design: investigation of kinetic and isotherm. Ultrason. Sonochem. 36, 409–419 (2017). https://doi.org/10.1016/j.ultsonch.2016.12.016

    Article  Google Scholar 

  63. Yang, H.; Masse, S.; Rouelle, M.; Aubry, E.; Li, Y.; Roux, C.; Journaux, Y.; Li, L.; Coradin, T.: Magnetically recoverable iron oxide–hydroxyapatite nanocomposites for lead removal. Int. J. Environ. Sci. Technol. 12, 1173–1182 (2015). https://doi.org/10.1007/s13762-014-0514-2

    Article  Google Scholar 

  64. Mendiola-Alvarez, S.Y.; Hernández-Ramírez, A.; Guzmán-Mar, J.L.; Maya-Treviño, M.L.; Caballero-Quintero, A.; Hinojosa-Reyes, L.: A novel P-doped Fe2O3–TiO2 mixed oxide: Synthesis, characterization and photocatalytic activity under visible radiation. Today, Catal (2019). https://doi.org/10.1016/j.cattod.2019.01.004

    Book  Google Scholar 

  65. Fu, H.; Sun, S.; Yang, X.; Li, W.; An, X.; Zhang, H.; Dong, Y.: A facile coating method to construct uniform porous α-Fe2O3 @ TiO2 core–shell nanostructures with enhanced solar light photocatalytic activity. Powder Technol. 328, 389–396 (2018). https://doi.org/10.1016/j.powtec.2018.01.067

    Article  Google Scholar 

  66. Sui, Y.; Liu, Q.; Jiang, T.; Guo, Y.: Synthesis of nano-TiO2 photocatalysts with tunable Fe doping concentration from Ti-bearing tailings. Appl. Surf. Sci. 428, 1149–1158 (2018). https://doi.org/10.1016/j.apsusc.2017.09.197

    Article  Google Scholar 

  67. Baniamerian, H.; Safavi, M.; Alvarado-Morales, M.; Tsapekos, P.; Angelidaki, I.; Shokrollahzadeh, S.: Photocatalytic inactivation of vibrio fischeri using Fe2O3–TiO2-based nanoparticles. Environ. Res. 166, 497–506 (2018). https://doi.org/10.1016/j.envres.2018.06.011

    Article  Google Scholar 

  68. Cheng, L.; Qiu, S.; Chen, J.; Shao, J.; Cao, S.: A practical pathway for the preparation of Fe2O3 decorated TiO2 photocatalyst with enhanced visible-light photoactivity. Mater. Chem. Phys. J. 190, 53–61 (2017). https://doi.org/10.1016/j.matchemphys.2017.01.001

    Article  Google Scholar 

  69. Subramonian, W.; Wu, T.Y.; Chai, S.: Photocatalytic degradation of industrial pulp and paper mill effluent using synthesized magnetic Fe2O3–TiO2: treatment efficiency and characterizations of reused photocatalyst. J. Environ. Manage. 187, 298–310 (2017). https://doi.org/10.1016/j.jenvman.2016.10.024

    Article  Google Scholar 

  70. Abdel-Wahab, A.-M.; Al-Shirbini, A.-S.; Mohamed, O.; Nasr, O.: Photocatalytic degradation of paracetamol over magnetic flower-like TiO2/Fe2O3 core–shell nanostructures. J. Photochem. Photobiol. A Chem. 347, 186–198 (2017). https://doi.org/10.1016/j.jphotochem.2017.07.030

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the management of Adama Science and Technology University for providing financial support. Authors also express deep acknowledgement to Dr. Dereje Tsegaye for his write up improvement and Mr. Guta Amanu for his assistance in the laboratory.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed toward the achievement of the study in preparation of the manuscript.

Corresponding author

Correspondence to Buzuayehu Abebe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 498 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abebe, B., Ananda Murthy, H.C. & Dessie, Y. Synthesis and Characterization of Ti–Fe Oxide Nanomaterials: Adsorption–Degradation of Methyl Orange Dye. Arab J Sci Eng 45, 4609–4620 (2020). https://doi.org/10.1007/s13369-019-04328-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04328-1

Keywords

Navigation