Skip to main content
Log in

A New Highly Efficient Algerian Clay for the Removal of Heavy Metals of Cu(II) and Pb(II) from Aqueous Solutions: Characterization, Fractal, Kinetics, and Isotherm Analysis

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A physicochemical characterization, the irregularity of the surface quantified by the fractal dimension (DS), and the adsorption of copper (Cu(II)) and lead (Pb(II)) of a kaolin clay from aqueous solutions were studied. In addition, the effects of temperature, contact time, pH of solution, and clay mass on copper Cu(II) and Pb(II) adsorption were investigated. In this work, X-ray fluorescence, X-ray diffraction, and Fourier transform infrared spectroscopy were applied to study the composition and structure of the clay studied. The Brunauer–Emmett–Teller theory and the t-plot method were used to calculate the specific surface and porosity, respectively. The fractal analysis showed that the material has an irregular surface, with a very complex pore structure. This material has a very high adsorption capacity, which exceeds 97.5% and 99.95% for Cu(II) an Pb(II), respectively, for all concentrations under normal conditions of pH and temperature (pH7, T = 25 °C). The maximum adsorption capacity calculated by the Langmuir model was 52.63 mg g−1 for copper (Cu). For lead (Pb) ions, the maximum capacity was 57.30 mg g−1. The adsorption process was rapid, as equilibrium was achieved within 10 min for copper at 25 and 50 mg L−1 and within 30 min at 100 mg L−1. For lead (Pb) ions, equilibrium was achieved within the first minute at all concentrations. The kaolin clay has a better affinity for Pb(II) than Cu(II). The Temkin model showed better correlation with the experimental data for this material. The kinetic study demonstrated that Pb(II) and Cu(II) adsorption on kaolin was in a good accordance with the pseudo-second-order kinetic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J.: Heavy metal toxicity and the environment. Mol. Clin. Environ. Toxicol. 101, 133–164 (2012)

    Google Scholar 

  2. Gupta, P.; Diwan, B.: Bacterial, bacterial exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategie. Biotechnol. Rep. 13, 7–58 (2017)

    Google Scholar 

  3. Ibrahim, W.M.; Hassan, A.F.; Azab, Y.A.: Biosorption of toxic heavy metals from aqueous solution by Ulva lactuca activated carbon. Egypt. J. Basic Appl. Sci. 3, 241–249 (2016)

    Google Scholar 

  4. Shabani, K.S.; Aredejani, F.D.; Singh, R.N.; Marandi, R.; Soleimanyfar, H.: Numerical modeling of Cu2+ and Mn2+ ions biosorption by Aspergillus niger fungal biomass in a continuous reactor. Arch. Min. Sci. 56(3), 461–476 (2011)

    Google Scholar 

  5. Shabani, K.S.; Ardejani, F.D.; Badii, K.; Olya, M.E.: Preparation and characterization of novel nanomineral for the removal of several heavy metals from aqueous solution batch and continuous systems. Arab. J. Chem. 10, 3108–3127 (2017)

    Google Scholar 

  6. Danil de Namor, A.F.; El Gamouz, A.; Frangie, S.; Martinez, V.; Valiente, L.; Webb, O.A.: Turning the volume down on heavy metals using tuned diatomite. A review of diatomite and modified diatomite for the extraction of heavy metals from water. J. Hazard. Mater. 241–242, 14–31 (2012)

    Google Scholar 

  7. Selim, K.A.; El-Tawil, R.S.; Rostom, M.: Utilization of surface modified phyllosilicate for heavy metals removal from aqueous solutions. Egypt. J. Petrol. 27, 393–401 (2017)

    Google Scholar 

  8. Kamaraj, R.; Ganesan, P.; Lakshmi, J.; Vasudevan, S.: Removal of copper from water by electrocoagulation process—effect of alternating current (AC) and direct current (DC). Environ. Sci. Pollut. Res. 20, 399–412 (2013)

    Google Scholar 

  9. Vasudevan, S.; Lakshmi, J.; Packiyam, M.: Electrocoagulation studies on removal of cadmium using magnesium electrode. J. Appl. Electrochem. 40, 2023–2032 (2010)

    Google Scholar 

  10. Vasudevan, S.; Lakshmi, J.; Sozhan, G.: Electrocoagulation Studies on the Removal of Copper from Water Using Mild Steel electrode. Water Environ. Res. 84, 209–2019 (2012)

    Google Scholar 

  11. Vasudevan, S.; Lakshmi, J.; Layara, J.; Sozhan, G.: Remediation of phosphate-contaminated water by electrocoagulation with aluminum, aluminum alloy and mild steel anodes. Hazard. Mater. 164, 1480–1486 (2009)

    Google Scholar 

  12. Vasudevan, S.; Lakshmi, J.; Vanathi, R.: Electrochemical coagulation for chromium removal: process optimization, kinetics, isotherm and sludge characterization. Clean 38, 9–16 (2010)

    Google Scholar 

  13. Murray, H.H.: Applied Clay Mineralogy, vol. 2, 1st edn. Elsevier Science, Amsterdam (2006)

    Google Scholar 

  14. Saikia, B.J.; Parthasarathy, G.: Fourier transform infrared spectroscopic characterization of Kaolinite from Assam and Meghalaya, Northeastern India. J. Mod. Phys. 1, 206–210 (2010)

    Google Scholar 

  15. Kiros, A.; Gholap, A.V.; Gigante, G.E.: Fourier transform infrared spectroscopic characterization of clay minerals from rocks of Lalibela churches, Ethiopia. Int. J. Phys. Sci. 8(3), 109–119 (2013)

    Google Scholar 

  16. Djomgoue, P.; Njopwouo, D.: FT-IR spectroscopy applied for surface clays characterization. J Surf. Eng. Mater. Adv. Technol. 3, 275–282 (2013)

    Google Scholar 

  17. Diko, M.; Ekosse, G.: Fourier transform infrared spectroscopy and thermal analyses of Kaolinitic Clays from South Africa And Cameroon. J. Ogola Acta Geodyn. Geomater. 13(2), 149–158 (2016)

    Google Scholar 

  18. Vaculikova, L.; Plevova, E.; Vallova, S.; Koutnik, I.: Characterization and differentiation of Kaolinites from selected Czech deposits using infrared spectroscopy and differential thermal analysis. Acta Geodyn. Geomater. 8, 59–67 (2011)

    Google Scholar 

  19. Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.: Reporting physisorption data for gas/solid systems. Pure Appl. Chem. 57, 603–619 (1985)

    Google Scholar 

  20. Bergaya, F.; Lagaly, G.: Handbook of Clay Science, 2nd edn. Elsevier B.V, Amsterdam (2013)

    Google Scholar 

  21. Gregg, S.J.; Sing, K.S.W.: Adsorption, Surface Area and Porosity, 2nd edn. Academic Press, London (1982)

    Google Scholar 

  22. Brunauer, S.; Emmett, P.E.; Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)

    Google Scholar 

  23. Li, A.; Ding, W.; He, J.; Dai, P.; Yin, S.; Xie, F.: Investigation of pore structure and fractal characteristics of organic-rich shale reservoirs: a case study of lower Cambrian Qiongzhusi formation in Malong block of eastern Yunnan Province, South China. Mar. Pet. Geol. 70, 46–57 (2016)

    Google Scholar 

  24. Sing, K.S.W.: The use of gas adsorption for the characterization of porous solids. Colloids Surf. 38, 113–124 (1989)

    Google Scholar 

  25. Sing, K.S.W.: Physisorption of gases by carbon blacks. Carbon 32, 1311–1317 (1994)

    Google Scholar 

  26. Liu, X.; Xiong, J.; Liang, L.: Investigation of pore structure and fractal characteristics of organic-rich Yanchang formation shale in central China by nitrogen adsorption/desorption analysis. J. Nat. Gas Sci. Eng. 22, 62–72 (2015)

    Google Scholar 

  27. Celis, R.; Cornejo, J.; Hermosin, M.C.: Textural properties of synthetic clay-ferrihydrite associations. Clay Miner. 33, 395–407 (1998)

    Google Scholar 

  28. Helmy, A.K.; Ferreiro, E.A.; De Bussetti, S.G.; Peinemann, N.: Surface areas of kaolin, α-Fe2O3 and hydroxy-Al montmorillonite. Colloid Polym. Sci. 276, 539–543 (1998)

    Google Scholar 

  29. Hajnos, M.; Korsunskaia, L.; Pachepsky, Y.: Soil pore surface properties in managed grasslands. Soil Tillage Res. 55, 63–70 (2000)

    Google Scholar 

  30. Zhang, S.; Tang, S.; Tang, D.; Huang, W.; Pan, Z.: Determining fractal dimensions of coal pores by FHH model: problems and effects. J. Nat. Gas Sci. Eng. 21, 929–939 (2014)

    Google Scholar 

  31. Yang, F.; Ning, Z.; Liu, H.: Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China. Fuel 115, 378–384 (2014)

    Google Scholar 

  32. Pfeifer, P.; Cole, M.W.: Fractals in surface science: scattering and thermodynamics of adsorbed films II. New J. Phys. 14, 221–232 (1990)

    Google Scholar 

  33. Sokolowska, Z.; Borowko, M.; Reszko-Zygmunt, J.; Sokolowski, S.: Adsorption of nitrogen and water vapor by alluvial soils. Geoderma 107, 33–54 (2002)

    Google Scholar 

  34. Gonte, R.; Balasubramanian, K.: Heavy and toxic metal uptake by mesoporous hypercrosslinked SMA beads: isotherms and kinetics. J. Saudi Chem. Soc. 20, 579–590 (2016)

    Google Scholar 

  35. Lee, J.Y.; Chen, C.H.; Cheng, S.; Li, H.Y.: Adsorption of Pb(II) and Cu(II) metal ions on functionalized large-pore mesoporous silica. Int. J. Environ. Sci. Technol. 13, 65–76 (2016)

    Google Scholar 

  36. Golkhah, S.; Mousavi, H.Z.; Shirkhan, H.; Khaligh, A.: Removal of Pb(II) and Cu(II) ions from aqueous solutions by cadmium sulfide nanoparticles. Int. J. Nanosci. Nanotechnol. 13(2), 105–117 (2017)

    Google Scholar 

  37. Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A.: Adsorption of copper (II), chromium (III), nickel (II) and lead (II) ions from aqueous solutions by meranti sawdust. J. Hazard. Mater. 170, 969–977 (2009)

    Google Scholar 

  38. Yu, B.; Xu, J.; Liu, J.-H.; Yang, S.-T.; Luo, J.; Zhou, Q.; Wan, J.; Liao, R.; Wang, H.; Liu, Y.: Adsorption behavior of copper ions on graphene oxide–chitosan aerogel. J. Environ. Chem. Eng. 1, 1044–1050 (2013)

    Google Scholar 

  39. El Ass, K.: Adsorption of cadmium and copper onto natural clay: isotherm, kinetic and thermodynamic studies. Glob. NEST J. 20(2), 198–207 (2018)

    Google Scholar 

  40. Sari, A.; Tuzen, M.; Soylak, M.; Citak, D.: Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(II) from aqueous solution onto Turkish kaolinite clay. J. Hazard. Mater. 149, 283–291 (2007)

    Google Scholar 

  41. Azzam, A.M.; El-Wakeel, S.T.; Mostafa, B.B.; El-Shahat, M.: Removal of Pb, Cd, Cu and Ni from aqueous solution using nano scale zero valent iron particles. J. Environ. Chem. Eng. (2016). https://doi.org/10.1016/j.jece.2016.03.048

    Article  Google Scholar 

  42. Sana, Z.A.; Makshoof, A.; Muhammad, S.; Muhammad, I.D.: Simultaneous removal of Pb(II), Cd(II) and Cu(II) from aqueous solutions by adsorption on Triticum aestivum a green approach. Hydrol. Curr. Res. 2, 4 (2011)

    Google Scholar 

  43. Jaber, S.: Removal of heavy metals Pb2+, Cu2+, Zn2+, Cd2+, Ni2+, Co2+ and Fe3+ from aqueous solutions by using Xanthium pensylvanicum. Leonardo J. Sci. 2013, 10–97 (2013)

    Google Scholar 

  44. Sheeba Thavamani, S.: Removal of Cr(VI), Cu(II), Pb(II) and Ni(II) from aqueous solutions by adsorption on alumina. Res. J. Chem. Sci. 3(8), 44–48 (2013)

    Google Scholar 

  45. Ali, S.; Athar, M.; Salman, M.; Din, M.I.: Simultaneous removal of Pb(II), Cd(II) and Cu(II) from aqueous solutions by adsorption on Triticum aestivum—a green approach. Hydrol. Curr. Res. 2, 118 (2011). https://doi.org/10.4172/2157-7587.1000118

    Article  Google Scholar 

  46. Demirbas, A.; Sari, A.; Isildak, O.: Adsorption thermodynamics of stearic acid onto bentonite. J. Hazard. Mater. B135, 23–226 (2006)

    Google Scholar 

  47. Liang, L.; He, J.; Wei, M.; Evans, D.G.; Duan, X.: Factors influencing the removal of fluoride from aqueous solution by calcined Mg–Al–CO3 layered double hydroxides. J. Hazard. Mater. B133, 119–128 (2016)

    Google Scholar 

  48. Lazarevic, S.; Jankovic-Castvan, I.; Jovanovic, D.; Milonjic, S.; Janackovic, D.; Petrovic, R.: Adsorption of Pb2+, Cd2+ and Sr2+ ions onto natural and acid-activated sepiolites. Appl. Clay Sci. 37, 47–57 (2007)

    Google Scholar 

  49. McBride, M.B.: Environmental chemistry of soils. Oxford University Press, New York (1994)

    Google Scholar 

  50. Vico, L.: Acid-base behaviour an Cu2+ and Zn2+ complexation properties of the sepiolite/water interface. Chem. Geol. 198, 213–222 (2003)

    Google Scholar 

  51. Lide, D.R.: Handbook of Chemistry and Physics, 79th edn. CRC Press, Boca Raton (1998)

    Google Scholar 

  52. Hillel, D.: Environmental Soil Physics. Academic Press, San Diego (1998)

    Google Scholar 

  53. Amarasinghe, B.M.W.P.K.; Williams, R.A.: Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chem. Eng. J. 132, 299–309 (2007)

    Google Scholar 

  54. Ricordel, S.; Taha, S.; Cisse, I.; Dorange, G.: Heavy metals removal by adsorption onto peanut husks carbon: characterization, kinetic study and modeling. Sep. Purif. Technol. 24, 389–401 (2001)

    Google Scholar 

  55. Figen, G.; Bahar, B.: Biosorption of malachite green from an aqueous solution using pomegranate peel: equilibrium modelling, kinetic and thermodynamic studies. J. Mol. Liq. 243, 790–798 (2017)

    Google Scholar 

  56. Orumwense, F.F.O.: Removal of lead from water by adsorption on a kaolinitic clay. J. Chem. Technol. Biotechnol. 65, 363–369 (1996)

    Google Scholar 

  57. Unuabonah, E.I.; Adebowale, K.O.; Olu-Owolabi, B.I.; Yang, L.Z.; Kong, L.X.: Adsorption of Pb(II) and Cd(II) from aqueous solutions onto sodium tetraborate-modified kaolinite clay: equilibrium and thermodynamic studies. Hydrometallurgy 93, 1–9 (2008)

    Google Scholar 

  58. Padilla-Ortega, E.; Leyva-Ramos, R.; Mendoza-Barron, J.; Guerrero-Coronado, R.M.; Jacobo-Azuara, A.; Aragon-Piña, A.: Adsorption of heavy metal ions from aqueous solution onto sepiolite. Adsorpt. Sci. Technol. 29(6), 569–584 (2011)

    Google Scholar 

  59. Chouchane, T.; Yahi, M.; Boukari, A.; Balaska, A.; Chouchane, S.: Adsorption du cuivre en solution par le kaolin. J. Mater. Environ. Sci. 7(8), 2825–2842 (2016)

    Google Scholar 

  60. Al-Degs, Y.S.; El-Barghouthi, M.I.; Issa, A.A.; Khraisheh, M.A.; Walker, G.M.: Sorption of Zn(II), Pb(II), and Co(II) using natural sorbents: equilibrium and kinetic studies. Water Res. 40(26), 45–2658 (2006)

    Google Scholar 

  61. Bhattacharyya, K.G.; Sen Gupta, S.: Removal of Cu(II) by natural and acid-activated clays: an insight of adsorption isotherm, kinetic and thermodynamics. Desalination 272, 66–75 (2011)

    Google Scholar 

  62. Panadare, D.C.; Lade, V.G.; Rathod, V.K.: Adsorptive removal of copper (II) from aqueous solution onto the waste sweet lime peels (SLP): equilibrium, kinetics and thermodynamics studies. Desalin. Water Treat. 52, 7822–7837 (2014)

    Google Scholar 

  63. Lee, C.K.; Low, K.S.; Chew, S.L.: Removal of anionic dyes by water hyacinth roots. Adv. Environ. Res. 3, 343–351 (1999)

    Google Scholar 

  64. Okoronkwo, A.E.; Anwasi, S.: Biosorption modeling of copper and zinc adsorption from aqueous solution by Tithonia diversifolia. In: CSN Conference Proceeding, pp. 92–102. Chemical Society of Nigeria, Deltachem (2008)

  65. Weber, W.J.; Morris, J.C.: Kinetics of adsorption of carbon from solutions. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 89, 31–63 (1963)

    Google Scholar 

  66. Kaaser, S.; Barrington, S.; Elektorowicz, M.; Wang, L.: Effect of Pb and Cd on Cu adsorption by sand-bentonite 1iners». Can. J. Civ. Eng. 32(1), 241–249 (2005)

    Google Scholar 

  67. Tan, I.A.W.; Ahmad, A.L.; Hameed, B.H.: Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. J. Hazard. Mater. 164, 473–482 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdallah Bouguettoucha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahah, S., Nacef, S., Chebli, D. et al. A New Highly Efficient Algerian Clay for the Removal of Heavy Metals of Cu(II) and Pb(II) from Aqueous Solutions: Characterization, Fractal, Kinetics, and Isotherm Analysis. Arab J Sci Eng 45, 205–218 (2020). https://doi.org/10.1007/s13369-019-03985-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03985-6

Keywords

Navigation