Skip to main content
Log in

Electrophoretic Deposition of Graphene Oxide Nanosheets on Copper Pipe for Corrosion Protection

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This work is ultimately aimed to deposit graphene oxide (GO) nanosheets onto the surface of copper (Cu) pipe by electrophoretic deposition (EPD) technique for enhancing the corrosion resistance. A stable aqueous GO suspension was prepared by liquid exfoliation of graphite oxide in deionized water which acted as an EPD electrolyte solution. Anodic deposition on Cu pipe was carried out under different operating parameters such as applied voltage, running time and GO nanosheets concentration. The GO-deposited film onto Cu pipe was investigated using scanning electron microscope, X-ray diffraction and Fourier transform infrared spectroscopy. The results showed that 20 V and 60 s deposition time with 0.5 mg/ml concentration induced a uniform continuous coating film on Cu pipe. The corrosion resistance of Cu pipe treated with GO which was tested in 3.5% sodium chloride corrosive media was twofold higher than that of untreated Cu pipe. Collectively, the Cu pipe treated with GO using EPD deposition technique would have a potential in the application of harsh corrosive industrial environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Barsoukov, E.; Macdonald, J.R.: Impedance Spectroscopy Theory, Experiment, and Applications (2005). https://doi.org/10.1002/0471716243

  2. Xiao, Y.; Gu, J.; Zhang, J.: Semiconductor property and corrosion behavior of passive film formed on steel with zinc coating in 5% NaCl solution. Arab. J. Sci. Eng. 42, 4273–4280 (2017). https://doi.org/10.1007/s13369-017-2640-x

    Article  Google Scholar 

  3. Armelin, E.; Meneguzzi, Á.; Ferreira, C.A.; Alemán, C.: Polyaniline, polypyrrole and poly(3,4-ethylenedioxythiophene) as additives of organic coatings to prevent corrosion. Surf. Coat. Technol. 203, 3763–3769 (2009). https://doi.org/10.1016/j.surfcoat.2009.06.019

    Article  Google Scholar 

  4. El-Shazly, A.H.; Wazzan, A.A.: Using polypyrrole coating for improving the corrosion resistance of steel buried in corrosive mediums. Int. J. Electrochem. Sci. 7, 1946–1957 (2012)

    Google Scholar 

  5. Moon, S.-M.; Pyun, S.-I.: The formation and dissolution of anodic oxide films on pure aluminium in alkaline solution. Electrochim. Acta 44, 2445–2454 (1999). https://doi.org/10.1016/S0013-4686(98)00368-5

    Article  Google Scholar 

  6. Mittal, V.K.; Bera, S.; Saravanan, T.; Sumathi, S.; Krishnan, R.; Rangarajan, S.; et al.: Formation and characterization of bi-layer oxide coating on carbon-steel for improving corrosion resistance. Thin Solid Films 517, 1672–1676 (2009). https://doi.org/10.1016/j.tsf.2008.09.094

    Article  Google Scholar 

  7. Shchukin, D.G.; Zheludkevich, M.; Yasakau, K.; Lamaka, S.; Ferreira, M.G.S.; Möhwald, H.: Layer-by-layer assembled nanocontainers for self-healing corrosion protection. Adv. Mater. 18, 1672–1678 (2006). https://doi.org/10.1002/adma.200502053

    Article  Google Scholar 

  8. Andreeva, D.V.; Skorb, E.V.; Shchukin, D.G.: Layer-by-layer polyelectrolyte/inhibitor nanostructures for metal corrosion protection. ACS Appl. Mater. Interfaces 2, 1954–1962 (2010). https://doi.org/10.1021/am1002712

    Article  Google Scholar 

  9. Razavi, F.; Shabani-Nooshabadi, M.; Behpour, M.: Sol-gel synthesis, characterization and electrochemical corrosion behavior of S-N-C-doped TiO2 nano coating on copper. J. Mol. Liq. 266, 99–105 (2018). https://doi.org/10.1016/J.MOLLIQ.2018.06.056

    Article  Google Scholar 

  10. Tian, S.; Liu, Z.; Shen, L.; Pu, J.; Liu, W.; Sun, X.; et al.: Performance evaluation of mercapto functional hybrid silica sol-gel coating and its synergistic effect with f-GNs for corrosion protection of copper surface. RSC Adv. 8, 7438–7449 (2018). https://doi.org/10.1039/c7ra11435d

    Article  Google Scholar 

  11. Hikku, G.S.; Jeyasubramanian, K.; Venugopal, A.; Ghosh, R.: Corrosion resistance behaviour of graphene/polyvinyl alcohol nanocomposite coating for aluminium-2219 alloy. J Alloys Compd. 716, 259–269 (2017). https://doi.org/10.1016/j.jallcom.2017.04.324

    Article  Google Scholar 

  12. Shirdar, M.R.; Izman, S.; Taheri, M.M.; Assadian, M.; Abdul Kadir, M.R.: Effect of electrophoretic deposition parameters on the corrosion behavior of hydroxyapatite-coated cobalt-chromium using response surface methodology. Arab. J. Sci. Eng. (2016). https://doi.org/10.1007/s13369-015-1700-3

    Google Scholar 

  13. Kiran, N.U.; Dey, S.; Singh, B.P.; Besra, L.: Graphene coating on copper by electrophoretic deposition for corrosion prevention. Coatings (2017). https://doi.org/10.3390/coatings7120214

    Google Scholar 

  14. Vaezi, M.R.; Sadrnezhaad, S.K.; Nikzad, L.: Electrodeposition of Ni-SiC nano-composite coatings and evaluation of wear and corrosion resistance and electroplating characteristics. Colloids Surf. A Physicochem. Eng. Asp. 315, 176–182 (2008). https://doi.org/10.1016/j.colsurfa.2007.07.027

    Article  Google Scholar 

  15. Liu, Y.; Li, S.; Zhang, J.; Liu, J.; Han, Z.; Ren, L.: Corrosion inhibition of biomimetic super-hydrophobic electrodeposition coatings on copper substrate. Corros. Sci. 94, 190–196 (2015). https://doi.org/10.1016/j.corsci.2015.02.009

    Article  Google Scholar 

  16. Mišković-Stanković, V.; Jevremović, I.; Jung, I.; Rhee, K.: Electrochemical study of corrosion behavior of graphene coatings on copper and aluminum in a chloride solution. Carbon N. Y. 75, 335–344 (2014). https://doi.org/10.1016/j.carbon.2014.04.012

    Article  Google Scholar 

  17. Merisalu, M.; Kahro, T.; Kozlova, J.; Niilisk, A.; Nikolajev, A.; Marandi, M.; et al.: Graphene-polypyrrole thin hybrid corrosion resistant coatings for copper. Synth. Met. 200, 16–23 (2015). https://doi.org/10.1016/j.synthmet.2014.12.024

    Article  Google Scholar 

  18. Jehn, H.A.: Improvement of the corrosion resistance of PVD hard coating-substrate systems. Surf. Coat. Technol. 125, 212–217 (2000). https://doi.org/10.1016/S0257-8972(99)00551-4

    Article  Google Scholar 

  19. Huh, J.H.; Kim, S.H.; Chu, J.H.; Kim, S.Y.; Kim, J.H.; Kwon, S.Y.: Enhancement of seawater corrosion resistance in copper using acetone-derived graphene coating. Nanoscale 6, 4379–4386 (2014). https://doi.org/10.1039/c3nr05997a

    Article  Google Scholar 

  20. Sherif, E.-S.; El Danaf, E.; Abdo, H.; Zein El Abedin, S.; Al-Khazraji, H.: Effect of annealing temperature on the corrosion protection of hot swaged Ti–54M alloy in 2 M HCl pickling solutions. Metals (Basel) 7, 29 (2017). https://doi.org/10.3390/met7010029

    Article  Google Scholar 

  21. Van der Biest, O.O.; Vandeperre, L.J.: Electrophoretic deposition of materials. Annu. Rev. Mater. Sci. 29, 327–352 (1999). https://doi.org/10.1146/annurev.matsci.29.1.327

    Article  Google Scholar 

  22. Chavez-Valdez, A.; Shaffer, M.S.P.; Boccaccini, A.R.: Applications of graphene electrophoretic deposition. A review. J. Phys. Chem. B 117, 1502–1515 (2013). https://doi.org/10.1021/jp3064917

    Article  Google Scholar 

  23. Thomas, B.J.C.; Boccaccini, A.R.; Shaffer, M.S.P.: Multi-walled carbon nanotube coatings using Electrophoretic Deposition (EPD). J. Am. Ceram. Soc. 88, 980–982 (2005). https://doi.org/10.1111/j.1551-2916.2005.00155.x

    Article  Google Scholar 

  24. Besra, L.; Liu, M.: A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater Sci. 52, 1–61 (2007). https://doi.org/10.1016/j.pmatsci.2006.07.001

    Article  Google Scholar 

  25. Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; et al.: Electric field in atomically thin carbon films. Science 306, 666–669 (2004). https://doi.org/10.1126/science.1102896

    Article  Google Scholar 

  26. Wu, Z.S.; Ren, W.; Gao, L.; Zhao, J.; Chen, Z.; Liu, B.; et al.: Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 3, 411–417 (2009). https://doi.org/10.1021/nn900020u

    Article  Google Scholar 

  27. Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; et al.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008). https://doi.org/10.1021/nl0731872

    Article  Google Scholar 

  28. Hwang, E.H.; Adam, S.; Sarma, S.D.: Carrier transport in two-dimensional graphene layers. Phys. Rev. Lett. (2007). https://doi.org/10.1103/physrevlett.98.186806

    Google Scholar 

  29. Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; et al.: Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008). https://doi.org/10.1126/science.1156965

    Article  Google Scholar 

  30. Pei, S.; Cheng, H.M.: The reduction of graphene oxide. Carbon N. Y. 50, 3210–3228 (2012). https://doi.org/10.1016/j.carbon.2011.11.010

    Article  Google Scholar 

  31. Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide.pdf. Carbon N. Y. 45, 1558–1565 (2007). https://doi.org/10.1016/j.carbon.2007.02.034

    Article  Google Scholar 

  32. Zheng, Q.; Kim, J.-K.: Synthesis, structure, and properties of graphene and graphene oxide. Graphene Transpar. Conduct. (2015). https://doi.org/10.1007/978-1-4939-2769-2_2

    Article  Google Scholar 

  33. Li, D.; Müller, M.B.; Gilje, S.; Kaner, R.B.; Wallace, G.G.: Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008). https://doi.org/10.1038/nnano.2007.451

    Article  Google Scholar 

  34. Loh, K.P.; Bao, Q.; Ang, P.K.; Yang, J.: The chemistry of graphene. J. Mater. Chem. 20, 2277–2289 (2010). https://doi.org/10.1039/b920539j

    Article  Google Scholar 

  35. Chen, S.; Brown, L.; Levendorf, M.; Cai, W.; Ju, S.Y.; Edgeworth, J.; et al.: Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano 5, 1321–1327 (2011). https://doi.org/10.1021/nn103028d

    Article  Google Scholar 

  36. Zhou, F.; Li, Z.; Shenoy, G.J.; Li, L.; Liu, H.: Enhanced room temperature corrosion of copper in the presence of graphene. ACS Nano (2013). https://doi.org/10.1021/nn402150t

    Google Scholar 

  37. Singh Raman, R.K.; Chakraborty Banerjee, P.; Lobo, D.E.; Gullapalli, H.; Sumandasa, M.; Kumar, A.; et al.: Protecting copper from electrochemical degradation by graphene coating. Carbon N. Y. 50, 4040–4045 (2012). https://doi.org/10.1016/j.carbon.2012.04.048

    Article  Google Scholar 

  38. Singh, B.P.; Jena, B.K.; Bhattacharjee, S.; Besra, L.: Development of oxidation and corrosion resistance hydrophobic graphene oxide-polymer composite coating on copper. Surf. Coat. Technol. 232, 475–481 (2013). https://doi.org/10.1016/j.surfcoat.2013.06.004

    Article  Google Scholar 

  39. He, W.; Zhu, L.; Chen, H.; Nan, H.; Li, W.; Liu, H.; et al.: Electrophoretic deposition of graphene oxide as a corrosion inhibitor for sintered NdFeB. Appl. Surf. Sci. 279, 416–423 (2013). https://doi.org/10.1016/j.apsusc.2013.04.130

    Article  Google Scholar 

  40. Singh, B.P.; Nayak, S.; Nanda, K.K.; Jena, B.K.; Bhattacharjee, S.; Besra, L.: The production of a corrosion resistant graphene reinforced composite coating on copper by electrophoretic deposition. Carbon N. Y. 61, 47–56 (2013). https://doi.org/10.1016/j.carbon.2013.04.063

    Article  Google Scholar 

  41. Raza, M.A.; Rehman, Z.U.; Ghauri, F.A.; Ahmad, A.; Ahmad, R.; Raffi, M.: Corrosion study of electrophoretically deposited graphene oxide coatings on copper metal. Thin Solid Films 620, 150–159 (2016). https://doi.org/10.1016/j.tsf.2016.09.036

    Article  Google Scholar 

  42. Shao, Y.; Wang, J.; Engelhard, M.; Wang, C.; Lin, Y.: Facile and controllable electrochemical reduction of graphene oxide and its applications. J. Mater. Chem. 20, 743–748 (2010). https://doi.org/10.1039/b917975e

    Article  Google Scholar 

  43. Diba, M.; García-Gallastegui, A.; Klupp Taylor, R.N.; Pishbin, F.; Ryan, M.P.; Shaffer, M.S.P.; et al.: Quantitative evaluation of electrophoretic deposition kinetics of graphene oxide. Carbon N. Y. 67, 656–661 (2014). https://doi.org/10.1016/j.carbon.2013.10.041

    Article  Google Scholar 

  44. Wang, G.; Wang, B.; Park, J.; Yang, J.; Shen, X.; Yao, J.: Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by a solvothermal method. Carbon N. Y. 47, 68–72 (2009). https://doi.org/10.1016/j.carbon.2008.09.002

    Article  Google Scholar 

  45. Takadoum, J.; Houmid, Bennani H.: Influence of substrate roughness and coating thickness on adhesion, friction and wear of TiN films. Surf. Coat. Technol. 96, 272–282 (1997). https://doi.org/10.1016/S0257-8972(97)00182-5

    Article  Google Scholar 

  46. Lim, D.K.; Barhoumi, A.; Wylie, R.G.; Reznor, G.; Langer, R.S.; Kohane, D.S.: Enhanced photothermal effect of plasmonic nanoparticles coated with reduced graphene oxide. Nano Lett. 13, 4075–4079 (2013). https://doi.org/10.1021/nl4014315

    Article  Google Scholar 

  47. Gurunathan, S.; Han, J.; Park, J.H.; Kim, J.H.: An in vitro evaluation of graphene oxide reduced by Ganoderma spp. in human breast cancer cells (MDA-MB-231). Int. J. Nanomed. 9, 1783–1797 (2014). https://doi.org/10.2147/ijn.s57735

    Article  Google Scholar 

  48. Muthoosamy, K.; Geetha Bai, R.; Abubakar, I.B.; Sudheer, S.M.; Lim, H.N.; Loh, H.S.; et al.: Exceedingly biocompatible and thin-layered reduced graphene oxide nanosheets using an eco-friendly mushroom extract strategy. Int. J. Nanomed. 10, 1505–1519 (2015). https://doi.org/10.2147/IJN.S75213

    Google Scholar 

  49. Botas, C.; Álvarez, P.; Blanco, P.; Granda, M.; Blanco, C.; Santamaría, R.; et al.: Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods. Carbon N. Y. 65, 156–164 (2013). https://doi.org/10.1016/j.carbon.2013.08.009

    Article  Google Scholar 

  50. Stankovich, S.; Piner, R.D.; Chen, X.; Wu, N.; Nguyen, S.T.; Ruoff, R.S.: Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater. Chem. 16, 155–158 (2006). https://doi.org/10.1039/b512799h

    Article  Google Scholar 

  51. An, S.J.; Zhu, Y.; Lee, S.H.; Stoller, M.D.; Emilsson, T.; Park, S.; et al.: Thin film fabrication and simultaneous anodic reduction of deposited graphene oxide platelets by electrophoretic deposition. J. Phys. Chem. Lett. 1, 1259–1263 (2010). https://doi.org/10.1021/jz100080c

    Article  Google Scholar 

  52. Lowry, G.V.; Hill, R.J.; Harper, S.; Rawle, A.F.; Hendren, C.O.; Klaessig, F.; et al.: Guidance to improve the scientific value of zeta-potential measurements in nanoEHS. Environ. Sci. Nano 3, 953–965 (2016). https://doi.org/10.1039/c6en00136j

    Article  Google Scholar 

  53. Hanaor, D.; Michelazzi, M.; Veronesi, P.; Leonelli, C.; Romagnoli, M.; Sorrell, C.: Anodic aqueous electrophoretic deposition of titanium dioxide using carboxylic acids as dispersing agents. J. Eur. Ceram. Soc. 31, 1041–1047 (2011). https://doi.org/10.1016/j.jeurceramsoc.2010.12.017

    Article  Google Scholar 

  54. Kim, K.M.; Bang, I.C.: Effects of graphene oxide nanofluids on heat pipe performance and capillary limits. Int. J. Therm. Sci. 100, 346–356 (2016). https://doi.org/10.1016/j.ijthermalsci.2015.10.015

    Article  Google Scholar 

  55. Lee, V.; Whittaker, L.; Jaye, C.; Baroudi, K.M.; Fischer, D.A.; Banerjee, S.: Large-area chemically modified graphene films: electrophoretic deposition and characterization by soft X-ray absorption spectroscopy. Chem. Mater. 21, 3905–3916 (2009). https://doi.org/10.1021/cm901554p

    Article  Google Scholar 

  56. Rafieazad, M.; Jaffer, J.A.; Cui, C.; Duan, X.; Nasiri, A.: Nanosecond laser fabrication of hydrophobic stainless steel surfaces: the impact on microstructure and corrosion resistance. Materials (Basel) (2018). https://doi.org/10.3390/ma11091577

    Google Scholar 

  57. Raza, M.A.; Ali, A.; Ghauri, F.A.; Aslam, A.; Yaqoob, K.; Wasay, A.; et al.: Electrochemical behavior of graphene coatings deposited on copper metal by electrophoretic deposition and chemical vapor deposition. Surf. Coat. Technol. (2017). https://doi.org/10.1016/j.surfcoat.2017.06.083

    Google Scholar 

  58. Roy, D.: Electrochemical techniques and their applications for chemical mechanical planarization (CMP) of metal films. Adv. Chem. Mech. Planarization (2016). https://doi.org/10.1016/b978-0-08-100165-3.00003-6

    Google Scholar 

  59. Frankel, G.S.: Fundamentals of corrosion kinetics. Springer Ser. Mater. Sci. 233, 17 (2016). https://doi.org/10.1007/978-94-017-7540-3_2

    Article  Google Scholar 

  60. Prasai, D.; Tuberquia, J.C.; Harl, R.R.; Jennings, G.K.; Bolotin, K.I.: Graphene: corrosion-inhibiting coating. ACS Nano 6, 1102–1108 (2012). https://doi.org/10.1021/nn203507y

    Article  Google Scholar 

  61. Kear, G.; Barker, B.D.; Walsh, F.C.: Electrochemical corrosion of unalloyed copper in chloride media—a critical review. Corros. Sci. 46, 109–135 (2004). https://doi.org/10.1016/S0010-938X(02)00257-3

    Article  Google Scholar 

  62. Gamry. Getting Started with Electrochemical Corrosion Measurement. Appl Note EIS03 2006:1–11

  63. Wan, Y.; Chen, M.; Liu, W.; Shen, X.X.; Min, Y.; Xu, Q.: The research on preparation of superhydrophobic surfaces of pure copper by hydrothermal method and its corrosion resistance. Electrochim. Acta 270, 310–318 (2018). https://doi.org/10.1016/j.electacta.2018.03.060

    Article  Google Scholar 

  64. Su, Y.; Kravets, V.G.; Wong, S.L.; Waters, J.; Geim, A.K.; Nair, R.R.: Impermeable barrier films and protective coatings based on reduced graphene oxide. Nat. Commun. (2014). https://doi.org/10.1038/ncomms5843

    Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge the Egyptian Ministry of Higher Education (MOHE) for the financial support and Egypt-Japan University (E-JUST) for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Essam Hares.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hares, E., El-Shazly, A.H., El-Kady, M.F. et al. Electrophoretic Deposition of Graphene Oxide Nanosheets on Copper Pipe for Corrosion Protection. Arab J Sci Eng 44, 5559–5569 (2019). https://doi.org/10.1007/s13369-019-03872-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03872-0

Keywords

Navigation