Skip to main content
Log in

Cooling Computer Chips with Cascaded and Non-cascaded Thermoelectric Devices

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Thermoelectric devices are currently being used in cooling and generating electricity applications. This study mainly focuses on using thermoelectric devices for both applications towards cooling down computer chips; especially, that the very large scale integration technology has reached high advancement where more than 100 million transistors can be fabricated in 1 mm2. Reducing the non-uniformity of the chip temperature is important so as to decrease the induced thermal stress in this chip and consequently reduce its failure rate. To simultaneously reduce both the non-uniformity of the temperature distribution in the chip and the power requirements for the cooling system, thermoelectric generators can be installed on the cooler chip areas to harvest electrical power from the chip wasted heat. Thereafter, the chip hotspot areas are cooled down using thermoelectric coolers that are powered by the harvested electrical power from the thermoelectric generators in order to maintain the temperatures of these hotspots to be less than or equal a certain temperature threshold. Because no additional electrical power requirement is needed to cool down the hotspots, this cooling technique is called in this paper as “sustainable self-cooling framework for cooling chip hotspots”. However, the question is that can the harvested electrical power by the thermoelectric generators be enough to power the thermoelectric coolers for different computer chips at a given operating condition? As such, one of the objectives of this paper is to develop a three-dimensional numerical and optimization model to predict the thermal and electrical performance of cascaded and non-cascaded thermoelectric generators and cascaded and non-cascaded thermoelectric coolers for cooling chip applications. Then, validate the developed model against experimental data. The results showed that the predictions of the developed model were in good agreement with the experimental to within ± 4%. After gaining confidence in the developed model, it was used for a given chip operating condition to conduct a case study for a sustainable self-cooling framework in order to answer the raised question above. The results showed that the self-cooling framework can successfully cool down the hotspot at an acceptable temperature with not only no need for additional electrical power requirements but also for reducing the non-uniformity in the chip temperature distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Carlson, T.; Heirman, T.; Eeckhout, L.: Sniper: exploring the level of abstraction for scalable and accurate parallel multi-core simulation. In: Conference on High Performance Computing Networking, Storage and Analysis (Supercomputing—SC), Number 52 (2011)

  2. Jejurikar, R.; Pereira, C.; Gupta, R.: Leakage aware dynamic voltage scaling for real-time embedded systems. In: The 41st Annual Design Automation Conference, San Diego, CA, USA, June 7–11, (2004)

  3. Skadron, K.; Sankaranarayanan, K.; Velusamy, S.; Tarjan, D.; Stan, M.; Huang, W.: Temperature-aware microarchitecture: modeling and implementation. ACM Trans. Archit. Code Optim. 1(1), 94–125 (2004)

    Article  Google Scholar 

  4. Lee, S.; Pandiyan, D.; Seo J.-S.; Wu, C.-J.: Thermoelectric-based sustainable self-cooling for fine-grained processor hot spots. In: 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Las Vegas, NV, USA, 31 May–3 June (2016)

  5. Jayakumar S.; Reda, S.: Making sense of thermoelectrics for processor thermal management and energy harvesting. In: IEEE/ACM International Symposium on Low Power Electronics and Design, Rome, Italy, 22–24 July (2015)

  6. Castilhos, G.; Mandelli, M.; Ost, L.; Moraes, F.: Hierarchical energy monitoring for task mapping in many-core systems. J. Syst. Archit. 63, 80–92 (2016)

    Article  Google Scholar 

  7. El-Genk, M.S.; Saber, H.H.: Composite spreader for cooling computer chip with non-uniform heat dissipation. IEEE Trans. Compon. Packag. Technol. 31(1), 165–172 (2008). https://doi.org/10.1109/TCAPT.2008.916847

    Article  Google Scholar 

  8. Snyder, G.J.; Soto, M.; Alley, R.; Koester, D.; Conner, B.: Hot spot cooling using embedded thermoelectric coolers. In: Twenty-Second Annual IEEE Semiconductor Thermal Measurement and Management Symposium, Dallas, TX, USA (2006)

  9. Redmond, M.; Manickaraj, K.; Sullivan, O.; Kumar, S.: Hotspot cooling in stacked chips using thermoelectric coolers. IEEE Trans. Compon. Packag. Manuf. Technol. 3(5), 759–767 (2013)

    Article  Google Scholar 

  10. El-Genk, M.S.; Saber, H.H.; Parker, J.L.: Efficient spreaders for cooling high power computer chips. J. Appl. Therm. Eng. 27, 1072–1088 (2007)

    Article  Google Scholar 

  11. El-Genk, M.S.; Saber, H.H.; Parker, J.L.: Thermal analyses of composite copper/porous graphite spreaders for immersion cooling applications. In: ASME/Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems: Advances in Electronic Packaging 2005, Proceedings of InterPACK ‘05, Part A, San Francisco, CA, pp. 305–314 (2005)

  12. Gupta, M.P.; Sayer, M.S.; Mukhopadhyay, S.; Kumar, S.: Ultrathin thermoelectric devices for on-chip peltier cooling. IEEE Trans. Compon. Packag. Manuf. Technol. 1(9), 1395–1405 (2011)

    Article  Google Scholar 

  13. Sullivan, O.; Gupta, M.P.; Mukhhyopadhyay, S.; Kumar, S.: Array of thermoelectric coolers for on-chip thermal management. J. Electron. Packag. 134, 1–8 (2012)

    Article  Google Scholar 

  14. AlShehri, S.A.; Saber, H.H.: Experimental investigation of using thermoelectric cooling for computer chips. J. King Saud Univ. Eng. Sci. (2019). https://doi.org/10.1016/j.jksues.2019.03.009

  15. Chowdhury, I.; Prasher, R.; Lofgreen, K.; Chrysler, G.; Narasimhan, S.; Mahajan, R.; Koester, D.; Alley, R.; Venkatasubramanian, R.: On-chip cooling by superlattice-based thin-film thermoelectrics. Nat. Nanotechnol. 4(4), 235–238 (2009)

    Article  Google Scholar 

  16. Saber, H.H.; El-Genk, M.S.: Effects of metallic coatings on the performance of skutterudite-based segmented unicouples. Energy Convers. Manag. 48(4), 1383–1400 (2007)

    Article  Google Scholar 

  17. Saber, H.H.; El-Genk, M.S.; Caillat, T.: Tests results of skutterudite based thermoelectric unicouples. Energy Convers. Manag. 48(2), 555–567 (2007)

    Article  Google Scholar 

  18. Saber, H.H.; El-Genk, M.S.: Thermal and performance analyses of efficient radioisotope power systems. Energy Convers. Manag. 47(15–16), 2290–2307 (2006)

    Google Scholar 

  19. Saber, H.H.; El-Genk, M.S.; Caillat, T.; Sakamoto, J.: Tests results and performance comparisons of coated and un-coated skutterudite based segmented unicouples. Energy Convers. Manag. 47(2), 174–200 (2006)

    Article  Google Scholar 

  20. El-Genk, M.S.; Saber, H.H.: Performance analysis of cascaded thermoelectric converters for advanced radioisotope power systems. Energy Convers. Manag. 46(7–8), 1083–1105 (2005)

    Article  Google Scholar 

  21. El-Genk, M.S.; Saber, H.H.; Caillat, T.: Efficient segmented thermoelectric for space power applications. Energy Convers. Manag. 44(11), 1755–1772 (2003)

    Article  Google Scholar 

  22. El-Genk, M.S.; Saber, H.H.: High efficiency segmented thermoelectric for operation between 973 K and 300 K. Energy Convers. Manag. 44(7), 1069–2003 (2003)

    Article  Google Scholar 

  23. El-Genk, M.S.; Saber, H.H.: Parametric and optimization analyses of cascaded thermoelectric-advanced radioisotope power systems with 4-GPH bricks. In: Rowe, D.M. (ed.) Thermoelectrics Handbook: Macro to Nano, Chapter 55, pp. 55-1–55-13. CRC Press, Taylor & Francis Group. ISBN 0-8493-2264-2 (2006)

  24. El-Genk, M.S.; Saber, H.H.: Performance and mass estimates of cascaded thermoelectric modules—advanced radioisotope power systems (CTM-ARPSs) with 4-GPHS bricks. In: Rowe, D.M. (ed.) Thermoelectrics Handbook: Macro to Nano, Chapter 54, pp. 54-1–54-14. CRC Press, Taylor & Francis Group, ISBN 0-8493-2264-2 (2006)

  25. El-Genk, M.S.; Saber, H.H.: Modeling and optimization of segmented thermoelectric generators for terrestrial and space applications. In: Rowe, D.M. (ed.) Thermoelectrics Handbook: Macro to Nano, Chapter 43, pp. 43-1–43-13. CRC Press, Taylor & Francis Group, ISBN 0-8493-2264-2 (2006)

  26. Rajpoot, S.C.; Mishra, G.; Manser, R.S.; Sahu, U.; Rajput, S.S.: Analysis of power generation from exhaust gas on 4 stroke 4 cylinder petrol engine using thermoelectric generator. GRD J. Glob. Res. Dev. J. Eng. 2(7), 97–108 (2017)

    Google Scholar 

  27. Stabler, F.: Automotive thermoelectric generator design issues. Presented at DOE Thermoelectric Applications Workshop, San Diego, CA. http://www1.eere.energy.gov/vehiclesandfuels/pdfs/thermoelectrics_app_2009/wednesday/stabler.pdf. Accessed Feb 2018

  28. GMZ Energy Announces 1,000 Watt High-Temperature Thermoelectric Generator for U.S. Military. http://www.businesswire.com/multimedia/home/20141203005186/en/. Accessed Jan 2018

  29. Thepmanee, T.; Julsereewong P.; Taratanaphol, N.: Waste-heat thermoelectric power source for industrial wireless transmitters. In: IEEE Conference on Electrical Engineering/Electronics Computer Telecommunications and Information Technology, Chiang Mai, Thailand (2010)

  30. Carlson, E.; Strunz, K.; Otis, B.: A 20 mV input boost converter with efficient digital control for thermoelectric energy harvesting. IEEE J. Solid State Circuits 45(4), 741–750 (2010)

    Article  Google Scholar 

  31. Ramadass, Y.; Chandrakasan, A.: A battery-less thermoelectric energy harvesting interface circuit with 35 mV startup voltage. IEEE J. Solid State Circuits 46(1), 333–341 (2010)

    Article  Google Scholar 

  32. ITRS, International Technology Roadmap for Semiconductors (2004)

  33. Knickerbocker, J.U.; Pompeo, F.L.; Tai, A.F.; et al.: An advanced multichip module (MCM) for high-performance UNIX servers. IBM J. Res. Dev. 46(6), 779–804 (2002)

    Article  Google Scholar 

  34. Knickerbocker, J.U.; Andry, P.S.; Dang, B.; et al.: Three-dimensional silicon integration. IBM J. Res. Dev. 52(6), 553–569 (2008)

    Article  Google Scholar 

  35. Saber, H.H.; AlShehri, S.A.; Maref, W.: Performance optimization of cascaded and non-cascaded thermoelectric devices for cooling computer chips. J. Energy Convers. Manag. 191, 174–192 (2019). https://doi.org/10.1016/j.enconman.2019.04.028

  36. Chin-Hsiang Cheng, C.-H.; Huang, S.-Y.; Cheng, T.-C.: A three-dimensional theoretical model for predicting transient thermal behavior of thermoelectric coolers. Int. J. Heat Mass Transf. 53, 2001–2011 (2010)

    Article  MATH  Google Scholar 

  37. Li, W.; Paul, M.C.; Siviter, J.; Montecucco, A.; Knox, A.R.; Sweet, T.; Min, G.; Baig, H.; Mallick, T.K.; Han, G.; Gregory, D.H.; Azough, F.; Freer, R.: Thermal performance of two heat exchangers for thermoelectric generators. Case Stud. Therm. Eng. 8, 164–175 (2016)

    Article  Google Scholar 

  38. LaClair, T.J.; Mudawar, I.: Thermal transients in a capillary evaporator prior to the initiation of boiling. Int. J. Heat Mass Transf. 43, 3937–3952 (2000)

    Article  MATH  Google Scholar 

  39. Li, S.; Ahn, J.; Strong, R.; Brockman, J.; Tullsen, D.; Jouppi, N.: McPAT: an integrated power, area, and timing modeling framework for multicore and manycore architectures. In: Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture, Dec 12–16, 2009, New York, NY (2009)

Download references

Funding

Funding was provided by Royal Commission for Jubail and Yanbu (Grant No. IFR-381-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saleh A. Al-Shehri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Shehri, S.A. Cooling Computer Chips with Cascaded and Non-cascaded Thermoelectric Devices. Arab J Sci Eng 44, 9105–9126 (2019). https://doi.org/10.1007/s13369-019-03862-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03862-2

Keywords

Navigation