Skip to main content
Log in

Evaluation of Heat Transfer Mechanisms in Heat Pipe Charged with Nanofluid

  • Review - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The nanofluid is a colloidal solid–liquid mixture obtained by the dispersing nanoparticles with a high heat transfer coefficient in the base fluid. In general, metal, metal oxide, ceramic and magnetic nanoparticles are used in nanofluids. The nanoparticles suspended in the base fluid of heat pipes effectively increased the heat transfer rate and thermal conductivity properties of the base fluid. The nanofluids have been found to be acting much better for some problems such as sedimentation, erosion, clogging and pressure drop compared to common slurries. The energy transfer is carried out by two-phase heat transfer mechanism in heat pipes. There are many parameters and factors that have an effect in the boiling heat transfer coefficient. It is not easy to understand the positive and negative changes caused by nanofluids in this complex heat transfer mechanism. The surface geometry is a significant indicator on the boiling heat transfer mechanism. Investigation into nanofluid effects besides the surface geometry is very important in the experimental studies. In addition, it is known that nanofluids change the properties of the heater surface, apart from the thermophysical properties. The synthesis methods of nanofluids are presented in this article. Then, the physical and chemical mechanisms determining the long-term stability of nanofluids are explained in detail. Finally, some useful information about the use of nanofluids in heat pipes and pool boiling of nanofluids is given. The presented study also describes the pool boiling mechanism of nanofluids to understand the positive effects of nanofluids on the heat pipes heat transfer mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jouhara, H.; Chauhan, A.; Nannou, T.; Almahmoud, S.; Delpech, B.; Wrobel, L.C.: Heat pipe based systems: advances and applications. Energy 128, 729–754 (2017). https://doi.org/10.1016/j.energy.2017.04.028

    Google Scholar 

  2. Sureshkumar, R.; Mohideen, S.T.; Nethaji, N.: Heat transfer characteristics of nanofluids in heat pipes: a review. Renew. Sustain. Energy Rev. 20, 397–410 (2013). https://doi.org/10.1016/j.rser.2012.11.044

    Google Scholar 

  3. Anderson, W.G.: Evaluation of heat pipe working fluids in the temperature range 450 to 700 K. AIP Conf. Proc. 699, 20–27 (2004). https://doi.org/10.1063/1.1649553

    Google Scholar 

  4. Touloukian, Y.S.; Powell, R.W.; Ho, C.Y.; Klemens, P.G.: Thermal Conductivity - Metallic Elements and Alloys, vol. 1. IFI/PLENUM, New York-Washington (1970)

    Google Scholar 

  5. Paul, G.; Chopkar, M.; Manna, I.; Das, P.K.: Techniques for measuring the thermal conductivity of nanofluids: a review. Renew. Sustain. Energy Rev. 14, 1913–1924 (2010). https://doi.org/10.1016/j.rser.2010.03.017

    Google Scholar 

  6. Che Sidik, N.A.; Mahmud Jamil, M.; Aziz Japar, W.M.A.; Muhammad Adamu, I.: A review on preparation methods, stability and applications of hybrid nanofluids. Renew. Sustain. Energy Rev. 80, 1112–1122 (2017). https://doi.org/10.1016/j.rser.2017.05.221

    Google Scholar 

  7. Ramezanizadeh, M.; Alhuyi Nazari, M.; Ahmadi, M.H.; Açıkkalp, E.: Application of nanofluids in thermosyphons: a review. J. Mol. Liq. 272, 395–402 (2018). https://doi.org/10.1016/j.molliq.2018.09.101

    Google Scholar 

  8. Tawfik, M.M.: Experimental studies of nanofluid thermal conductivity enhancement and applications: a review. Renew. Sustain. Energy Rev. 75, 1239–1253 (2017). https://doi.org/10.1016/j.rser.2016.11.111

    Google Scholar 

  9. Ganvir, R.B.; Walke, P.V.; Kriplani, V.M.: Heat transfer characteristics in nanofluid: a review. Renew. Sustain. Energy Rev. 75, 451–460 (2017). https://doi.org/10.1016/j.rser.2016.11.010

    Google Scholar 

  10. Wang, X.Q.; Mujumdar, A.S.: A review on nanofluids - part II: experiments and applications. Braz. J. Chem. Eng. 25, 631–648 (2008). https://doi.org/10.1590/S0104-66322008000400002

    Google Scholar 

  11. Wang, X.-Q.; Mujumdar, A.S.: Heat transfer characteristics of nanofluids: a review. Int. J. Therm. Sci. 46, 1–19 (2007). https://doi.org/10.1016/j.ijthermalsci.2006.06.010

    Google Scholar 

  12. Wen, D.; Lin, G.; Vafaei, S.; Zhang, K.: Review of nanofluids for heat transfer applications. Particuology 7, 141–150 (2009). https://doi.org/10.1016/j.partic.2009.01.007

    Google Scholar 

  13. Choi, S.U.S., Eastman, J.A.: Enhancing thermal conductivity of fluids with nanoparticles. In: ASME International Mechanical Engineering Congress and Exposition, pp. 99–105 (1995)

  14. Ahuja, A.S.: Thermal design of a heat exchanger employing laminar flow of particle suspensions. Int. J. Heat Mass Transf. 25, 725–728 (1982). https://doi.org/10.1016/0017-9310(82)90179-X

    Google Scholar 

  15. Gupta, N.K.; Tiwari, A.K.; Ghosh, S.K.: Heat transfer mechanisms in heat pipes using nanofluids: a review. Exp. Therm. Fluid Sci. 90, 84–100 (2018). https://doi.org/10.1016/j.expthermflusci.2017.08.013

    Google Scholar 

  16. Azmi, W.H.; Sharma, K.V.; Mamat, R.; Najafi, G.; Mohamad, M.S.: The enhancement of effective thermal conductivity and effective dynamic viscosity of nanofluids: a review. Renew. Sustain. Energy Rev. 53, 1046–1058 (2016). https://doi.org/10.1016/j.rser.2015.09.081

    Google Scholar 

  17. Murshed, S.M.S.; Leong, K.C.; Yang, C.: Investigations of thermal conductivity and viscosity of nanofluids. Int. J. Therm. Sci. 47, 560–568 (2008). https://doi.org/10.1016/j.ijthermalsci.2007.05.004

    Google Scholar 

  18. Mahbubul, I.M.; Saidur, R.; Amalina, M.A.: Latest developments on the viscosity of nanofluids. Int. J. Heat Mass Transf. 55, 874–885 (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.021

    Google Scholar 

  19. Nguyen, C.T.; Desgranges, F.; Roy, G.; Galanis, N.; Maré, T.; Boucher, S.; Angue Mintsa, H.: Temperature and particle-size dependent viscosity data for water-based nanofluids—hysteresis phenomenon. Int. J. Heat Fluid Flow 28, 1492–1506 (2007). https://doi.org/10.1016/j.ijheatfluidflow.2007.02.004

    Google Scholar 

  20. Kole, M.; Dey, T.K.: Viscosity of alumina nanoparticles dispersed in car engine coolant. Exp. Therm. Fluid Sci. 34, 677–683 (2010). https://doi.org/10.1016/j.expthermflusci.2009.12.009

    Google Scholar 

  21. Prasher, R.; Song, D.; Wang, J.; Phelan, P.: Measurements of nanofluid viscosity and its implications for thermal applications. Appl. Phys. Lett. 89, 133108 (2006). https://doi.org/10.1063/1.2356113

    Google Scholar 

  22. Chevalier, J.; Tillement, O.; Ayela, F.: Rheological properties of nanofluids flowing through microchannels. Appl. Phys. Lett. 91, 233103 (2007). https://doi.org/10.1063/1.2821117

    Google Scholar 

  23. Namburu, P.K.; Kulkarni, D.P.; Dandekar, A.; Das, D.K.: Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids. Micro Nano Lett. 2, 67 (2007). https://doi.org/10.1049/mnl:20070037

    Google Scholar 

  24. Pastoriza-Gallego, M.J.; Casanova, C.; Legido, J.L.; Piñeiro, M.M.: CuO in water nanofluid: influence of particle size and polydispersity on volumetric behaviour and viscosity. Fluid Phase Equilibria 300, 188–196 (2011). https://doi.org/10.1016/j.fluid.2010.10.015

    Google Scholar 

  25. Anoop, K.B.; Sundararajan, T.; Das, S.K.: Effect of particle size on the convective heat transfer in nanofluid in the developing region. Int. J. Heat Mass Transf. 52, 2189–2195 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.063

    MATH  Google Scholar 

  26. He, Y.; Jin, Y.; Chen, H.; Ding, Y.; Cang, D.; Lu, H.: Heat transfer and flow behaviour of aqueous suspensions of TiO\(_{2}\) nanoparticles (nanofluids) flowing upward through a vertical pipe. Int. J. Heat Mass Transf. 50, 2272–2281 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.024

    MATH  Google Scholar 

  27. Lu, W.-Q.; Fan, Q.-M.: Study for the particle’s scale effect on some thermophysical properties of nanofluids by a simplified molecular dynamics method. Eng. Anal. Bound. Elem. 32, 282–289 (2008). https://doi.org/10.1016/j.enganabound.2007.10.006

    MATH  Google Scholar 

  28. Nguyen, C.T.; Desgranges, F.; Galanis, N.; Roy, G.; Maré, T.; Boucher, S.; Angue Mintsa, H.: Viscosity data for Al\(_{2}\)O\(_{3}\)–water nanofluid—hysteresis: is heat transfer enhancement using nanofluids reliable? Int. J. Therm. Sci. 47, 103–111 (2008). https://doi.org/10.1016/j.ijthermalsci.2007.01.033

    Google Scholar 

  29. Timofeeva, E.V.; Yu, W.; France, D.M.; Singh, D.; Routbort, J.L.: Nanofluids for heat transfer: an engineering approach. Nanoscale Res. Lett. 6, 182 (2011). https://doi.org/10.1186/1556-276X-6-182

    Google Scholar 

  30. Timofeeva, E.V.; Routbort, J.L.; Singh, D.: Particle shape effects on thermophysical properties of alumina nanofluids. J. Appl. Phys. 106, 14304 (2009). https://doi.org/10.1063/1.3155999

    Google Scholar 

  31. Masuda, H.; Ebata, A.; Teramae, K.; Hishinuma, N.: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of Al\(_{2}\)O\(_{3}\), SiO\(_{2}\) and TiO\(_{2}\) ultra-fine particles. Netsu Bussei 7, 227–233 (1993). https://doi.org/10.2963/jjtp.7.227

    Google Scholar 

  32. Maxwell, J.: A Treatise on Electricity and Magnetism: Vol II, vol. 1, pp. 333–335. Clarendon Press, Oxford (1873). https://doi.org/10.1017/CBO9780511709333

    Google Scholar 

  33. Wang, X.; Xu, X.; S. Choi, S.U.: Thermal conductivity of nanoparticle-fluid mixture. J. Thermophys. Heat Transf. 13, 474–480 (1999). https://doi.org/10.2514/2.6486

    Google Scholar 

  34. Xuan, Y.; Roetzel, W.: Conceptions for heat transfer correlation of nanofluids. Int. J. Heat Mass Transf. 43, 3701–3707 (2000). https://doi.org/10.1016/S0017-9310(99)00369-5

    MATH  Google Scholar 

  35. Wang, B.X.; Li, H.; Peng, X.F.: Research on the heat-conduction enhancement for liquid with nano-particle suspensions. J. Therm. Sci. 11, 214–219 (2002). https://doi.org/10.1007/s11630-002-0057-6

    Google Scholar 

  36. Xuan, Y.; Li, Q.: Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow 21, 58–64 (2000). https://doi.org/10.1016/S0142-727X(99)00067-3

    Google Scholar 

  37. Sözen, A.; Menlik, T.; Gürü, M.; Boran, K.; Kılıç, F.; Aktaş, M.; Çakır, M.T.: A comparative investigation on the effect of fly-ash and alumina nanofluids on the thermal performance of two-phase closed thermo-syphon heat pipes. Appl. Therm. Eng. 96, 330–337 (2016). https://doi.org/10.1016/j.applthermaleng.2015.11.038

    Google Scholar 

  38. Witharana, S.; Palabiyik, I.; Musina, Z.; Ding, Y.: Stability of glycol nanofluids: the theory and experiment. Powder Technol. 239, 72–77 (2013). https://doi.org/10.1016/j.powtec.2013.01.039

    Google Scholar 

  39. Kostic, M.; Golubovic, M.; Hull, J.R.; Choi, S.U.S.: One-step method for the production of nanofluids. US Patent 7,718,033 B1 (2010)

  40. Li, Y.; Zhou, J.; Tung, S.; Schneider, E.; Xi, S.: A review on development of nanofluid preparation and characterization. Powder Technol. 196, 89–101 (2009). https://doi.org/10.1016/j.powtec.2009.07.025

    Google Scholar 

  41. Ghadimi, A.; Saidur, R.; Metselaar, H.S.C.: A review of nanofluid stability properties and characterization in stationary conditions. Int. J. Heat Mass Transf. 54, 4051–4068 (2011). https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.014

    Google Scholar 

  42. Wen, D.; Ding, Y.: Experimental investigation into the pool boiling heat transfer of aqueous based \(\gamma \)-alumina nanofluids. J. Nanopart. Res. 7, 265–274 (2005). https://doi.org/10.1007/s11051-005-3478-9

    Google Scholar 

  43. Missana, T.; Adell, A.: On the applicability of DLVO theory to the prediction of clay colloids stability. J. Colloid Interface Sci. 230, 150–156 (2000). https://doi.org/10.1006/jcis.2000.7003

    Google Scholar 

  44. Tang, C.; Zhou, T.; Yang, J.; Zhang, Q.; Chen, F.; Fu, Q.; Yang, L.: Wet-grinding assisted ultrasonic dispersion of pristine multi-walled carbon nanotubes (MWCNTs) in chitosan solution. Colloids Surf. B Biointerfaces 86, 189–197 (2011). https://doi.org/10.1016/j.colsurfb.2011.03.041

    Google Scholar 

  45. Chandler, D.: Interfaces and the driving force of hydrophobic assembly. Nature 437, 640–647 (2005). https://doi.org/10.1038/nature04162

    Google Scholar 

  46. Hashim, A.A. (ed.): Smart Nanoparticles Technology. InTech, Croatia (2012)

    Google Scholar 

  47. Yang, L.; Du, K.: A thermal conductivity model for low concentrated nanofluids containing surfactants under various dispersion types. Int. J. Refrig. 35, 1978–1988 (2012). https://doi.org/10.1016/j.ijrefrig.2012.07.013

    Google Scholar 

  48. Griffin, W.C.: Classification of surface-active agents by “ HLB”. J. Soc. Cosmet. Chem. 1, 311–326 (1946)

    Google Scholar 

  49. Griffin, W.C.: Calculation of HLB values of non-ionic surfactants. Am. Perfum. Essent. Oil Rev. 65, 26–29 (1955)

    Google Scholar 

  50. Kole, M.; Dey, T.K.: Thermophysical and pool boiling characteristics of ZnO–ethylene glycol nanofluids. Int. J. Therm. Sci. 62, 61–70 (2012). https://doi.org/10.1016/j.ijthermalsci.2012.02.002

    Google Scholar 

  51. Tang, E.; Cheng, G.; Ma, X.; Pang, X.; Zhao, Q.: Surface modification of zinc oxide nanoparticle by PMAA and its dispersion in aqueous system. Appl. Surf. Sci. 252, 5227–5232 (2006). https://doi.org/10.1016/j.apsusc.2005.08.004

    Google Scholar 

  52. Zhu, H.; Zhang, C.; Tang, Y.; Wang, J.; Ren, B.; Yin, Y.: Preparation and thermal conductivity of suspensions of graphite nanoparticles. Carbon 45, 226–228 (2007). https://doi.org/10.1016/j.carbon.2006.07.005

    Google Scholar 

  53. Wang, X.; Zhu, D.; Yang, S.: Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids. Chem. Phys. Lett. 470, 107–111 (2009). https://doi.org/10.1016/j.cplett.2009.01.035

    Google Scholar 

  54. Popa, M.; Pradell, T.; Crespo, D.; Calderón-Moreno, J.M.: Stable silver colloidal dispersions using short chain polyethylene glycol. Colloids Surf. A Physicochem. Eng. Asp. 303, 184–190 (2007). https://doi.org/10.1016/j.colsurfa.2007.03.050

    Google Scholar 

  55. Hassan, M.I.; Singh, P.K.; Tesfai, W.; Shatilla, Y.: An experimental study of heat pipe performance using nanofluids. Int. J. Green Energy 12, 225–229 (2015). https://doi.org/10.1080/15435075.2014.891518

    Google Scholar 

  56. Hung, Y.-H.; Teng, T.-P.; Lin, B.-G.: Evaluation of the thermal performance of a heat pipe using alumina nanofluids. Exp. Therm. Fluid Sci. 44, 504–511 (2013). https://doi.org/10.1016/j.expthermflusci.2012.08.012

    Google Scholar 

  57. Sözen, A.; Gürü, M.; Menlik, T.; Karakaya, U.; Çiftçi, E.: Experimental comparison of Triton X-100 and sodium dodecyl benzene sulfonate surfactants on thermal performance of TiO\(_{2}\)-deionized water nanofluid in a thermosiphon. Exp. Heat Transf. 31, 450–469 (2018). https://doi.org/10.1080/08916152.2018.1445673

    Google Scholar 

  58. Daghigh, R.; Zandi, P.: Experimental analysis of heat transfer in spiral coils using nanofluids and coil geometry change in a solar system. Appl. Therm. Eng. 145, 295–304 (2018). https://doi.org/10.1016/j.applthermaleng.2018.09.053

    Google Scholar 

  59. Al-Waeli, A.H.A.; Chaichan, M.T.; Sopian, K.; Kazem, H.A.: Influence of the base fluid on the thermo-physical properties of PV/T nanofluids with surfactant. Case Stud. Therm. Eng. 13, 100340 (2019). https://doi.org/10.1016/j.csite.2018.10.001

    Google Scholar 

  60. Sözen, A.; Öztürk, A.; Özalp, M.; Çiftçi, E.: Influences of alumina and fly ash nanofluid usage on the performance of recuperator including heat pipe bundle. Int. J. Environ. Sci. Technol. (2018). https://doi.org/10.1007/s13762-018-1832-6

    Google Scholar 

  61. Dehaj, M.S.; Mohiabadi, M.Z.: Experimental investigation of heat pipe solar collector using MgO nanofluids. Sol. Energy Mater. Sol. Cells 191, 91–99 (2019). https://doi.org/10.1016/j.solmat.2018.10.025

    Google Scholar 

  62. Ozsoy, A.; Corumlu, V.: Thermal performance of a thermosyphon heat pipe evacuated tube solar collector using silver–water nanofluid for commercial applications. Renew. Energy 122, 26–34 (2018). https://doi.org/10.1016/j.renene.2018.01.031

    Google Scholar 

  63. Sundar, L.S.; Singh, M.K.; Sousa, A.C.M.: Turbulent heat transfer and friction factor of nanodiamond-nickel hybrid nanofluids flow in a tube: an experimental study. Int. J. Heat Mass Transf. 117, 223–234 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.109

    Google Scholar 

  64. Ravi Kumar, N.T.; Bhramara, P.; Kirubeil, A.; Syam Sundar, L.; Singh, M.K.; Sousa, A.C.M.: Effect of twisted tape inserts on heat transfer, friction factor of Fe\(_{3}\)O\(_{4}\) nanofluids flow in a double pipe U-bend heat exchanger. Int. Commun. Heat Mass Transf. 95, 53–62 (2018). https://doi.org/10.1016/j.icheatmasstransfer.2018.03.020

    Google Scholar 

  65. Raei, B.; Peyghambarzadeh, S.M.; Salehi Asl, R.: Experimental investigation on heat transfer and flow resistance of drag-reducing alumina nanofluid in a fin-and-tube heat exchanger. Appl. Therm. Eng. 144, 926–936 (2018). https://doi.org/10.1016/j.applthermaleng.2018.09.006

    Google Scholar 

  66. Zhao, S.; Xu, G.; Wang, N.; Zhang, X.: Experimental study on the thermal start-up performance of the graphene/water nanofluid-enhanced solar gravity heat pipe. Nanomaterials 8, 72 (2018). https://doi.org/10.3390/nano8020072

    Google Scholar 

  67. Eiamsa-ard, S.; Wongcharee, K.: Convective heat transfer enhancement using Ag–water nanofluid in a micro-fin tube combined with non-uniform twisted tape. Int. J. Mech. Sci. 146–147, 337–354 (2018). https://doi.org/10.1016/j.ijmecsci.2018.07.040

    Google Scholar 

  68. Krishnakumar, T.S.; Viswanath, S.P.; Varghese, S.M.; Prakash, M.J.: Experimental studies on thermal and rheological properties of Al\(_{2}\)O\(_{3}\)–ethylene glycol nanofluid. Int. J. Refrig. 89, 122–130 (2018). https://doi.org/10.1016/j.ijrefrig.2018.03.008

    Google Scholar 

  69. Sarafraz, M.M.; Nikkhah, V.; Nakhjavani, M.; Arya, A.: Thermal performance of a heat sink microchannel working with biologically produced silver–water nanofluid: experimental assessment. Exp. Therm. Fluid Sci. 91, 509–519 (2018). https://doi.org/10.1016/j.expthermflusci.2017.11.007

    Google Scholar 

  70. Mahbubul, I.M.: Preparation, Characterization, Properties and Application of Nanofluid. William Andrew (Elsevier), Norwich, NY (2019). https://doi.org/10.1016/C2016-0-04294-8

    Google Scholar 

  71. Teng, T.-P.; Hung, Y.-H.; Teng, T.-C.; Mo, H.-E.; Hsu, H.-G.: The effect of alumina/water nanofluid particle size on thermal conductivity. Appl. Therm. Eng. 30, 2213–2218 (2010). https://doi.org/10.1016/j.applthermaleng.2010.05.036

    Google Scholar 

  72. Haddad, Z.; Abu-Nada, E.; Oztop, H.F.; Mataoui, A.: Natural convection in nanofluids: are the thermophoresis and Brownian motion effects significant in nanofluid heat transfer enhancement? Int. J. Therm. Sci. 57, 152–162 (2012). https://doi.org/10.1016/j.ijthermalsci.2012.01.016

    Google Scholar 

  73. Shima, P.D.; Philip, J.; Raj, B.: Role of microconvection induced by Brownian motion of nanoparticles in the enhanced thermal conductivity of stable nanofluids. Appl. Phys. Lett. 94, 223101 (2009). https://doi.org/10.1063/1.3147855

    Google Scholar 

  74. Jang, S.P.; Choi, S.U.S.: Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl. Phys. Lett. 84, 4316–4318 (2004). https://doi.org/10.1063/1.1756684

    Google Scholar 

  75. Prasher, R.; Bhattacharya, P.; Phelan, P.E.: Brownian-motion-based convective–conductive model for the effective thermal conductivity of nanofluids. J. Heat Transf. 128, 588 (2006). https://doi.org/10.1115/1.2188509

    Google Scholar 

  76. Evans, W.; Fish, J.; Keblinski, P.: Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl. Phys. Lett. 88, 93116 (2006). https://doi.org/10.1063/1.2179118

    Google Scholar 

  77. Turgut, A.; Tavman, I.; Chirtoc, M.; Schuchmann, H.P.; Sauter, C.; Tavman, S.: Thermal conductivity and viscosity measurements of water-based TiO\(_{2}\) nanofluids. Int. J. Thermophys. 30, 1213–1226 (2009). https://doi.org/10.1007/s10765-009-0594-2

    Google Scholar 

  78. Anoop, K.B.; Kabelac, S.; Sundararajan, T.; Das, S.K.: Rheological and flow characteristics of nanofluids: influence of electroviscous effects and particle agglomeration. J. Appl. Phys. 106, 34909 (2009). https://doi.org/10.1063/1.3182807

    Google Scholar 

  79. Yang, Y.; Zhang, Z.G.; Grulke, E.A.; Anderson, W.B.; Wu, G.: Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow. Int. J. Heat Mass Transf. 48, 1107–1116 (2005). https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.038

    Google Scholar 

  80. Mahbubul, I.M.; Chong, T.H.; Khaleduzzaman, S.S.; Shahrul, I.M.; Saidur, R.; Long, B.D.; Amalina, M.A.: Effect of ultrasonication duration on colloidal structure and viscosity of alumina–water nanofluid. Ind. Eng. Chem. Res. 53, 6677–6684 (2014). https://doi.org/10.1021/ie500705j

    Google Scholar 

  81. Kulkarni, D.P.; Das, D.K.; Vajjha, R.S.: Application of nanofluids in heating buildings and reducing pollution. Appl. Energy 86, 2566–2573 (2009). https://doi.org/10.1016/j.apenergy.2009.03.021

    Google Scholar 

  82. Namburu, P.K.; Das, D.K.; Tanguturi, K.M.; Vajjha, R.S.: Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties. Int. J. Therm. Sci. 48, 290–302 (2009). https://doi.org/10.1016/j.ijthermalsci.2008.01.001

    Google Scholar 

  83. Sohel Murshed, S.M.; Tan, S.-H.; Nguyen, N.-T.: Temperature dependence of interfacial properties and viscosity of nanofluids for droplet-based microfluidics. J. Phys. D Appl. Phys. 41, 85502 (2008). https://doi.org/10.1088/0022-3727/41/8/085502

    Google Scholar 

  84. Chen, H.; Ding, Y.; He, Y.; Tan, C.: Rheological behaviour of ethylene glycol based titania nanofluids. Chem. Phys. Lett. 444, 333–337 (2007). https://doi.org/10.1016/j.cplett.2007.07.046

    Google Scholar 

  85. Chen, H.; Ding, Y.; Tan, C.: Rheological behaviour of nanofluids. New J. Phys. 9, 367–367 (2007). https://doi.org/10.1088/1367-2630/9/10/367

    Google Scholar 

  86. Mahbubul, I.M.; Saidur, R.; Amalina, M.A.: Thermal conductivity, viscosity and density of R141b refrigerant based nanofluid. Procedia Eng. 56, 310–315 (2013). https://doi.org/10.1016/j.proeng.2013.03.124

    Google Scholar 

  87. Elias, M.M.; Mahbubul, I.M.; Saidur, R.; Sohel, M.R.; Shahrul, I.M.; Khaleduzzaman, S.S.; Sadeghipour, S.: Experimental investigation on the thermo-physical properties of Al\(_{2}\)O\(_{3}\) nanoparticles suspended in car radiator coolant. Int. Commun. Heat Mass Transf. 54, 48–53 (2014). https://doi.org/10.1016/j.icheatmasstransfer.2014.03.005

    Google Scholar 

  88. Kedzierski, M.A.: Viscosity and density of CuO nanolubricant. Int. J. Refrig. 35, 1997–2002 (2012). https://doi.org/10.1016/j.ijrefrig.2012.06.012

    Google Scholar 

  89. Vajjha, R.S.; Das, D.K.: A review and analysis on influence of temperature and concentration of nanofluids on thermophysical properties, heat transfer and pumping power. Int. J. Heat Mass Transf. 55, 4063–4078 (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.048

    Google Scholar 

  90. Pantzali, M.N.; Kanaris, A.G.; Antoniadis, K.D.; Mouza, A.A.; Paras, S.V.: Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface. Int. J. Heat Fluid Flow 30, 691–699 (2009). https://doi.org/10.1016/j.ijheatfluidflow.2009.02.005

    Google Scholar 

  91. Saeedinia, M.; Akhavan-Behabadi, M.A.; Razi, P.: Thermal and rheological characteristics of CuO–base oil nanofluid flow inside a circular tube. Int. Commun. Heat Mass Transf. 39, 152–159 (2012). https://doi.org/10.1016/j.icheatmasstransfer.2011.08.001

    Google Scholar 

  92. Shin, D.; Banerjee, D.: Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications. Int. J. Heat Mass Transf. 54, 1064–1070 (2011). https://doi.org/10.1016/j.ijheatmasstransfer.2010.11.017

    Google Scholar 

  93. Pak, B.C.; Cho, Y.I.: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. 11, 151–170 (1998). https://doi.org/10.1080/08916159808946559

    Google Scholar 

  94. Fakoor Pakdaman, M.; Akhavan-Behabadi, M.A.; Razi, P.: An experimental investigation on thermo-physical properties and overall performance of MWCNT/heat transfer oil nanofluid flow inside vertical helically coiled tubes. Exp. Therm. Fluid Sci. 40, 103–111 (2012). https://doi.org/10.1016/j.expthermflusci.2012.02.005

    Google Scholar 

  95. Mohebbi, A.: Prediction of specific heat and thermal conductivity of nanofluids by a combined equilibrium and non-equilibrium molecular dynamics simulation. J. Mol. Liq. 175, 51–58 (2012). https://doi.org/10.1016/j.molliq.2012.08.010

    Google Scholar 

  96. De Robertis, E.; Cosme, E.H.H.; Neves, R.S.; Kuznetsov, A.Y.; Campos, A.P.C.; Landi, S.M.; Achete, C.A.: Application of the modulated temperature differential scanning calorimetry technique for the determination of the specific heat of copper nanofluids. Appl. Therm. Eng. 41, 10–17 (2012). https://doi.org/10.1016/j.applthermaleng.2012.01.003

    Google Scholar 

  97. Kumaresan, V.; Velraj, R.: Experimental investigation of the thermo-physical properties of water–ethylene glycol mixture based CNT nanofluids. Thermochim. Acta 545, 180–186 (2012). https://doi.org/10.1016/j.tca.2012.07.017

    Google Scholar 

  98. Liu, J.; Wang, F.; Zhang, L.; Fang, X.; Zhang, Z.: Thermodynamic properties and thermal stability of ionic liquid-based nanofluids containing graphene as advanced heat transfer fluids for medium-to-high-temperature applications. Renew. Energy 63, 519–523 (2014). https://doi.org/10.1016/j.renene.2013.10.002

    Google Scholar 

  99. Ghazvini, M.; Akhavan-Behabadi, M.A.; Rasouli, E.; Raisee, M.: Heat transfer properties of nanodiamond-engine oil nanofluid in laminar flow. Heat Transf. Eng. 33, 525–532 (2012). https://doi.org/10.1080/01457632.2012.624858

    Google Scholar 

  100. He, Q.; Wang, S.; Tong, M.; Liu, Y.: Experimental study on thermophysical properties of nanofluids as phase-change material (PCM) in low temperature cool storage. Energy Convers. Manag. 64, 199–205 (2012). https://doi.org/10.1016/j.enconman.2012.04.010

    Google Scholar 

  101. Mariano, A.; Pastoriza-Gallego, M.J.; Lugo, L.; Mussari, L.; Piñeiro, M.M.: Co\(_{3}\)O\(_{4}\) ethylene glycol-based nanofluids: thermal conductivity, viscosity and high pressure density. Int. J. Heat Mass Transf. 85, 54–60 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.061

    Google Scholar 

  102. Anoop, K.; Sadr, R.; Al-Jubouri, M.; Amani, M.: Rheology of mineral oil-SiO\(_{2}\) nanofluids at high pressure and high temperatures. Co3O4 ethylene glycol-based nanofluids: thermal conductivity, viscosity and high pressure density 77, 108–115 (2014). https://doi.org/10.1016/j.ijthermalsci.2013.10.016

    Google Scholar 

  103. Chien, H.-T., Tsai, C.-I., Chen, P.-H., Chen, P.-Y.: Improvement on thermal performance of a disk-shaped miniature heat pipe with nanofluid. In: Fifth International Conference on Electronic Packaging Technology Proceedings, 2003. ICEPT2003, pp. 389–391. IEEE (2003)

  104. Manimaran, R.; Palaniradja, K.; Alagumurthi, N.; Hussain, J.: Experimental comparative study of heat pipe performance using CuO and TiO\(_{2}\) nanofluids. Int. J. Energy Res. 38, 573–580 (2014). https://doi.org/10.1002/er.3058

    Google Scholar 

  105. Saleh, R.; Putra, N.; Prakoso, S.P.; Septiadi, W.N.: Experimental investigation of thermal conductivity and heat pipe thermal performance of ZnO nanofluids. Int. J. Therm. Sci. 63, 125–132 (2013). https://doi.org/10.1016/j.ijthermalsci.2012.07.011

    Google Scholar 

  106. Senthilkumar, R.; Vaidyanathan, S.; Sivaraman, B.: Performance analysis of heat pipe using copper nanofluid with aqueous solution of n-butanol. Int. J. Mech. Mater. Eng. 1, 251–256 (2010)

    Google Scholar 

  107. Shanbedi, M.; Heris, S.Z.; Baniadam, M.; Amiri, A.; Maghrebi, M.: Investigation of heat-transfer characterization of EDA-MWCNT/DI–water nanofluid in a two-phase closed thermosyphon. Ind. Eng. Chem. Res. 51, 1423–1428 (2012). https://doi.org/10.1021/ie202110g

    Google Scholar 

  108. Yang, X.F.; Liu, Z.-H.; Zhao, J.: Heat transfer performance of a horizontal micro-grooved heat pipe using CuO nanofluid. J. Micromech. Microeng. 18, 35038 (2008). https://doi.org/10.1088/0960-1317/18/3/035038

    Google Scholar 

  109. Naphon, P.; Thongkum, D.; Assadamongkol, P.: Heat pipe efficiency enhancement with refrigerant–nanoparticles mixtures. Energy Convers. Manag. 50, 772–776 (2009). https://doi.org/10.1016/j.enconman.2008.09.045

    Google Scholar 

  110. Liu, Z.-H.; Li, Y.-Y.; Bao, R.: Compositive effect of nanoparticle parameter on thermal performance of cylindrical micro-grooved heat pipe using nanofluids. Int. J. Therm. Sci. 50, 558–568 (2011). https://doi.org/10.1016/j.ijthermalsci.2010.11.013

    Google Scholar 

  111. Yang, X.F.; Liu, Z.H.: Application of functionalized nanofluid in thermosyphon. Nanoscale Res. Lett. 6, 494 (2011). https://doi.org/10.1186/1556-276X-6-494

    Google Scholar 

  112. Noie, S.H.; Heris, S.Z.; Kahani, M.; Nowee, S.M.: Heat transfer enhancement using Al\(_{2}\)O\(_{3}\)/water nanofluid in a two-phase closed thermosyphon. Int. J. Heat Fluid Flow 30, 700–705 (2009). https://doi.org/10.1016/j.ijheatfluidflow.2009.03.001

    Google Scholar 

  113. Huminic, G.; Huminic, A.; Morjan, I.; Dumitrache, F.: Experimental study of the thermal performance of thermosyphon heat pipe using iron oxide nanoparticles. Int. J. Heat Mass Transf. 54, 656–661 (2011). https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.005

    Google Scholar 

  114. Bhullar, B.S.; Gangacharyulu, D.; Das, S.K.: Augmented thermal performance of straight heat pipe employing annular screen mesh wick and surfactant free stable aqueous nanofluids. Heat Transf. Eng. 38, 217–226 (2017). https://doi.org/10.1080/01457632.2016.1177418

    Google Scholar 

  115. Ghanbarpour, M.; Nikkam, N.; Khodabandeh, R.; Toprak, M.S.: Improvement of heat transfer characteristics of cylindrical heat pipe by using SiC nanofluids. Appl. Therm. Eng. 90, 127–135 (2015). https://doi.org/10.1016/j.applthermaleng.2015.07.004

    Google Scholar 

  116. Buschmann, M.H.; Franzke, U.: Improvement of thermosyphon performance by employing nanofluid. Int. J. Refrig. 40, 416–428 (2014). https://doi.org/10.1016/j.ijrefrig.2013.11.022

    Google Scholar 

  117. Buschmann, M.H.: Thermal conductivity and heat transfer of ceramic nanofluids. Int. J. Therm. Sci. 62, 19–28 (2012). https://doi.org/10.1016/j.ijthermalsci.2011.09.019

    Google Scholar 

  118. Nine, M.J.; Chung, H.; Tanshen, M.R.; Osman, N.A.B.A.; Jeong, H.: Is metal nanofluid reliable as heat carrier? J. Hazard. Mater. 273, 183–191 (2014). https://doi.org/10.1016/j.jhazmat.2014.03.055

    Google Scholar 

  119. Vijayakumar, M.; Navaneethakrishnan, P.; Kumaresan, G.; Kamatchi, R.: A study on heat transfer characteristics of inclined copper sintered wick heat pipe using surfactant free CuO and Al\(_{2}\)O\(_{3}\) nanofluids. J. Taiwan Inst. Chem. Eng. 81, 190–198 (2017). https://doi.org/10.1016/j.jtice.2017.10.032

    Google Scholar 

  120. Nazari, M.A.; Ghasempour, R.; Ahmadi, M.H.; Heydarian, G.; Shafii, M.B.: Experimental investigation of graphene oxide nanofluid on heat transfer enhancement of pulsating heat pipe. Int. Commun. Heat Mass Transf. 91, 90–94 (2018). https://doi.org/10.1016/j.icheatmasstransfer.2017.12.006

    Google Scholar 

  121. Zhou, Y.; Cui, X.; Weng, J.; Shi, S.; Han, H.; Chen, C.: Experimental investigation of the heat transfer performance of an oscillating heat pipe with graphene nanofluids. Powder Technol. 332, 371–380 (2018). https://doi.org/10.1016/j.powtec.2018.02.048

    Google Scholar 

  122. Das, S.K.; Putra, N.; Roetzel, W.: Pool boiling characteristics of nano-fluids. Int. J. Heat Mass Transf. 46, 851–862 (2003). https://doi.org/10.1016/S0017-9310(02)00348-4

    MATH  Google Scholar 

  123. Liu, Z.; Xiong, J.; Bao, R.: Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface. Int. J. Multiph. Flow 33, 1284–1295 (2007). https://doi.org/10.1016/j.ijmultiphaseflow.2007.06.009

    Google Scholar 

  124. Wen, D.; Corr, M.; Hu, X.; Lin, G.: Boiling heat transfer of nanofluids: the effect of heating surface modification. Int. J. Therm. Sci. 50, 480–485 (2011). https://doi.org/10.1016/j.ijthermalsci.2010.10.017

    Google Scholar 

  125. Bang, I.C.; Heung Chang, S.: Boiling heat transfer performance and phenomena of Al\(_{2}\)O\(_{3}\)–water nano-fluids from a plain surface in a pool. Int. J. Heat Mass Transf. 48, 2407–2419 (2005). https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.047

    Google Scholar 

  126. Shoghl, S.N.; Bahrami, M.: Experimental investigation on pool boiling heat transfer of ZnO, and CuO water-based nanofluids and effect of surfactant on heat transfer coefficient. Int. Commun. Heat Mass Transf. 45, 122–129 (2013). https://doi.org/10.1016/j.icheatmasstransfer.2013.04.015

    Google Scholar 

  127. Kwark, S.M.; Kumar, R.; Moreno, G.; Yoo, J.; You, S.M.: Pool boiling characteristics of low concentration nanofluids. Int. J. Heat Mass Transf. 53, 972–981 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2009.11.018

    Google Scholar 

  128. Song, S.L.; Lee, J.H.; Chang, S.H.: CHF enhancement of SiC nanofluid in pool boiling experiment. Exp. Therm. Fluid Sci. 52, 12–18 (2014). https://doi.org/10.1016/j.expthermflusci.2013.08.008

    Google Scholar 

  129. Kim, H.D.; Kim, J.; Kim, M.H.: Experimental studies on CHF characteristics of nano-fluids at pool boiling. Int. J. Multiph. Flow 33, 691–706 (2007). https://doi.org/10.1016/j.ijmultiphaseflow.2007.02.007

    Google Scholar 

  130. Kim, S.J.; Bang, I.C.; Buongiorno, J.; Hu, L.W.: Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int. J. Heat Mass Transf. 50, 4105–4116 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.002

    Google Scholar 

  131. Zhang, F.; Jacobi, A.M.: Aluminum surface wettability changes by pool boiling of nanofluids. Colloids Surf. A Physicochem. Eng. Asp. 506, 438–444 (2016). https://doi.org/10.1016/j.colsurfa.2016.07.026

    Google Scholar 

  132. Quan, X.; Wang, D.; Cheng, P.: An experimental investigation on wettability effects of nanoparticles in pool boiling of a nanofluid. Int. J. Heat Mass Transf. 108, 32–40 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.098

    Google Scholar 

  133. Binks, B.P.; Horozov, T.S.: Aqueous foams stabilized solely by silica nanoparticles. Angew. Chem. 117, 3788–3791 (2005). https://doi.org/10.1002/ange.200462470

    Google Scholar 

  134. Sarafraz, M.M.; Hormozi, F.: Nucleate pool boiling heat transfer characteristics of dilute Al\(_{2}\)O\(_{3}\)–ethyleneglycol nanofluids. Int. Commun. Heat Mass Transf. 58, 96–104 (2014). https://doi.org/10.1016/j.icheatmasstransfer.2014.08.028

    Google Scholar 

  135. Shahmoradi, Z.; Etesami, N.; Nasr Esfahany, M.: Pool boiling characteristics of nanofluid on flat plate based on heater surface analysis. Int. Commun. Heat Mass Transf. 47, 113–120 (2013). https://doi.org/10.1016/j.icheatmasstransfer.2013.06.006

    Google Scholar 

  136. Amiri, A.; Shanbedi, M.; Amiri, H.; Heris, S.Z.; Kazi, S.N.; Chew, B.T.; Eshghi, H.: Pool boiling heat transfer of CNT/water nanofluids. Appl. Therm. Eng. 71, 450–459 (2014). https://doi.org/10.1016/j.applthermaleng.2014.06.064

    Google Scholar 

  137. Sarafraz, M.M.; Hormozi, F.: Pool boiling heat transfer to dilute copper oxide aqueous nanofluids. Int. J. Therm. Sci. 90, 224–237 (2015). https://doi.org/10.1016/j.ijthermalsci.2014.12.014

    Google Scholar 

  138. Paul, G.; Chopkar, M.; Manna, I.; Das, P.K.: Techniques for measuring the thermal conductivity of nanofluids: a review. Renew. Sustain. Energy Rev. 14, 1913–1924 (2010). https://doi.org/10.1016/j.rser.2010.03.017

    Google Scholar 

Download references

Acknowledgements

This work was supported by Suleyman Demirel University Scientific Research Unit, Project No. 4209 D1-14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Ozsoy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corumlu, V., Ozsoy, A. & Ozturk, M. Evaluation of Heat Transfer Mechanisms in Heat Pipe Charged with Nanofluid. Arab J Sci Eng 44, 5195–5213 (2019). https://doi.org/10.1007/s13369-019-03742-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03742-9

Keywords

Navigation