Skip to main content
Log in

Design and Optimization of Novel Shaped FinFET

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A novel high-performance and miniaturized fin-shaped field effect transistor has been proposed which has been named as rectzoidal (rectz) because of its origin from the existing rectangular (rect) and trapezoidal (trap) structures. The rationale behind proposing this structure is to sustain the integration of millions of transistors on integrated circuits (ICs), further utilizing these scaled transistors in advanced processors of leading semiconductor industries. The work presented here is divided into two phases: first phase presents the proposed transistor design at 20 nm gate length and its comparative simulation analysis with the previous rect and trap transistor structures in terms of short channel effects and other analog and RF parameters like transconductance, output conductance, intrinsic gain, gate capacitance, unity gain frequency etc. using Cogenda three-dimensional Technology Computer-Aided Design (TCAD) tool. In the subsequent phase, i.e., optimization phase, artificial neural network was trained with design parameters of proposed structure and fitness function was formulated using weighted sum approach. Evolutionary and swarm-based optimization algorithms have been applied to obtain optimum design parameters of proposed transistor structure corresponding to minimum fitness function value. Results obtained through these optimizers are in good consistence with TCAD simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schaller, R.R.: Moore’s law: past, present, and future. IEEE Spectr. 34, 53–59 (1997)

    Article  Google Scholar 

  2. Tsuchiya, T.; Sato, Y.; Tomizawa, M.: Three mechanisms determining short-channel effects in fully-depleted SOI MOSFETs. IEEE Trans. Electron Dev. 45, 1116–1121 (1998)

    Article  Google Scholar 

  3. Pierret, R.F.: Semiconductor Device Fundamentals. Pearson Education, Delhi, India (1996)

    Google Scholar 

  4. Chang, L.; Tang, S.; King, T.J.; Bokor, J.; Hu, C.: Gate length scaling and threshold voltage control of double-gate MOSFETs. In: International Electron Devices Meeting, pp. 719–722 (2000)

  5. Chang, L.; Choi, Y.K.; Ha, D.; Ranade, P.; Xiong, S.; Bokor, J.; Hu, C.; King, T.J.: Extremely scaled silicon nano-CMOS devices. Proc. IEEE 91, 1860–73 (2003)

    Article  Google Scholar 

  6. Ernst, T.; Cristoloveanu, S.; Ghibaudo, G.; et al.: Ultimately thin double-gate SOI MOSFETs. IEEE Trans. Electron Dev. 50, 830–838 (2003)

    Article  Google Scholar 

  7. Hisamoto, D.; Lee, W.C.; Kedzierski, J.; et al.: FinFET-a self- aligned double-gate MOSFET scalable to 20 nm. IEEE Trans. Electron Dev. 47, 2320–25 (2000)

    Article  Google Scholar 

  8. Kawa, J.: The Use of FinFETs in IP Design. Chip Design Magazine: Tools, Technologies and Methodologies (2013)

  9. Islam, R.; Baten, M.Z.; Amin, E.M.; Khosru, Q.D.M.: On the distinction between triple gate (TG) and double gate (DG) SOI FinFETs: a proposal of critical top oxide thickness. In: IEEE International Conference on Electrical and Computer Engineering (ICECE), Dhaka, pp. 434–437 (2013)

  10. Chandorkar, A.; Mande, S.; Iwai, H.: Estimation of process variation impact on DG-FinFET device performance using Plackett-Burman design of experiment method. In: 9th International Conference on Solid-State and Integrated-Circuit Technology, Beijing, pp. 215–218 (2008)

  11. Sivasankaran, K.; Chitroju, T.R.K.; Reddy, K.S.A.; Subrahmanyam, M.S.; Harsha, M.V.S.; Mallik, P.S.: Effect of gate engineering in FinFET for RF applications. In: IEEE International Conference on Advances in Electrical Engineering (ICAEE), Vellore, pp. 1–6 (2014)

  12. Clarke, P.: EE Times. Intel’s FinFETs are less fin and more triangle. http://www.eetimes.com/electronics-news/4373195/Intel-FinFETs-shape-revealed/ (2012). Accessed 25 Jan 2015

  13. Fasarakis, N.; Karatsori, T.A.; Tsormpatzoglou, A.; et al.: Compact modeling of nanoscale trapezoidal FinFETs. IEEE Trans. Electron Dev. 61, 324–32 (2014)

    Article  Google Scholar 

  14. Gaurav, A.; Gill, S.S.; Kaur, N.: Performance analysis of rectangular and trapezoidal TG bulk FinFETs for 20 nm gate length. In: Annual IEEE India Conference (INDICON), New Delhi, pp 1–5 (2015)

  15. Gaynor, B.D.; Hassoun, S.: Fin shape impact on FinFET leakage with application to multithreshold and ultralow-leakage FinFET design. IEEE Trans. Electron Dev. 61, 2738–2744 (2014)

    Article  Google Scholar 

  16. Nam, H.; Shin, C.: Impact of current flow shape in tapered (versus rectangular) FinFET on threshold voltage variation induced by work-function variation. IEEE Trans. Electron Dev. 61, 2007–2011 (2014)

    Article  Google Scholar 

  17. Dubey, S.; Kondekar, P.N.: Fin shape dependent variability for strained SOI FinFETs. Microelectron. Eng. 162, 63–68 (2016)

    Article  Google Scholar 

  18. Kurniawan, E.D.; Yang, H.; Lin, C.-C.; Wu, Y.-C.: Effect of fin shape of tapered FinFETs on the device performance in 5-nm node CMOS technology. Microelectron. Reliab. (2017) (in press)

  19. Yu, Z.; Chang, S.; He, J.; Huang, Q.; Yu, Z.; Chang, S.; Wang, H.; Wang, H.; et al.: Effects of fin shape on sub-10 nm FinFETs. J. Comput. Electron. 14, 515–523 (2015)

    Article  Google Scholar 

  20. TSMC. Leading Edge Technology. http://www.tsmc.com/english/dedicatedFoundry/technology/16nm.htm. Accessed 1 Mar 2017

  21. Semiconductor Engineering. IBM, Intel and TSMC Roll out FinFETs. http://semiengineering.com/ibm-intel-and-tsmc-roll-out-finfets. Accessed 1 Mar 2017

  22. Global Foundries. 7nm FinFET. https://www.globalfoundries.com/technology-solutions/cmos/performance. Accessed 1 Mar 2017

  23. Andrade, M.G.C.; de Martino, J.A.; Aoulaiche, M.; Collaert, N.; Simoen, E.; Claeys, C.: Behavior of triple-gate bulk FinFETs with and without DTMOS operation. Solid State Electron. 71, 63–68 (2012)

    Article  Google Scholar 

  24. Mohapatra, S.K.; Pradhan, K.P.; Singh, D.; Sahu, P.K.: The role of geometry parameters and fin aspect ratio of sub-20 nm SOI-FinFET: an analysis towards analog and RF circuit design. IEEE Trans. Nanotechnol. 14, 546–554 (2015)

    Article  Google Scholar 

  25. Pradhan, K.P.; Priyanka,; Sahu, P.K.: Temperature dependency of double material gate oxide (DMGO) symmetric dual-k spacer (SDS) wavy FinFET. Superlattices Microstruct. 89, 355–361 (2016)

    Article  Google Scholar 

  26. Pradhan, K.P.; Priyanka,; Mallikarjunarao,; Sahu, P.K.: Exploration of symmetric high-k spacer (SHS) hybrid FinFET for high performance application. Superlattices Microstruct. 90, 191–197 (2016)

    Article  Google Scholar 

  27. Pradhan, K.P.; Sahu, K.P.: Benefits of asymmetric underlap dual-k spacer hybrid fin field-effect transistor over bulk fin field-effect transistor. IET Circuits Devices Syst. 10, 441–447 (2016)

    Article  Google Scholar 

  28. Pradhan, K.P.; Mohapatra, S.K.; Sahu, P.K.; Behera, D.K.: Impact of high-k gate dielectric on analog and RF performance of nanoscale DG-MOSFET. Microelectron. J. 45, 144–151 (2014)

    Article  Google Scholar 

  29. Grewal, N.S.; Rattan, M.; Patterh, M.S.: A linear antenna array failure correction with null steering using firefly algorithm. Def. Sci. J. 64, 136–142 (2014)

    Article  Google Scholar 

  30. Kaur, R.; Rattan, M.: Optimization of the return loss of differentially fed microstrip patch antenna using ANN and firefly algorithm. Wireless Pers. Commun. 80, 1547–1556 (2015)

    Article  Google Scholar 

  31. Dhaliwal, B.S.; Pattnaik, S.S.: Performance comparison of bio-inspired optimization algorithms for Sierpinski gasket fractal antenna design. Neural Comput. Appl. 27, 585–592 (2016)

    Article  Google Scholar 

  32. Gaurav, A.; Gill, S.S.; Kaur, N.; Rattan, M.: Density gradient quantum corrections based performance optimization of triangular TG bulk FinFETs using ANN and GA. In: 20th International Symposium VLSI Design and Test (VDAT), Guwahati, pp. 1–5 (2016)

  33. Kaur, J.; Gill, S.S.; Kaur, N.: Optimization of CMOS repeater driven interconnect RC line using genetic algorithm. J. Shanghai Univ. Nat. Sci. 22, 167–172 (2017)

    Google Scholar 

  34. Xie, X-F.; Zhang, W-J.; Bi, D-C.: Optimizing semiconductor devices by self-organizing particle swarm. In: Congress on Evolutionary Computation (CEC), Oregon, pp. 2017–2022 (2004)

  35. Bendib, T.; Djeffal, F.: Electrical performance optimization of nanoscale double-gate MOSFETs using multiobjective genetic algorithms. IEEE Trans. Electron Dev. 58, 3743–3750 (2011)

    Article  Google Scholar 

  36. Bendib, T.; Djeffal, F.; Meguellati, M.: An optimized junctionless GAA MOSFET design based on multi-objective computation for high-performance ultra-low power devices. J. Semicond. 35, 074002 (2014)

    Article  Google Scholar 

  37. Bendib, T.; Djeffal, F.; Bentrcia, T.; Arar, D.; Lakhdar, N.: Multi-objective genetic algorithms based approach to optimize the small signal parameters of gate stack double gate MOSFET. In: Proceedings of World Congress on Engineering (WCE), London (2012)

  38. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge (1992)

    Book  Google Scholar 

  39. Kennedy, J.; Eberhart, R.: Particle swarm optimization. In: Proceedings of International Conference on Neural Networks, Perth, WA, vol. 4, pp. 1942–1948 (1995)

  40. Yang, X.-S.: Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeugmann, T. (eds.) Stochastic Algorithms: Foundations and Applications (SAGA), pp. 169–178. Springer, Berlin (2009)

    Chapter  Google Scholar 

  41. Cogenda User’s Guides. http://www.cogenda.com/article/downloads. Accessed 3 Aug 2015

  42. Taur, Y.: CMOS design near the limit of scaling. IBM J. Res. Dev. 46, 213–222 (2002)

    Article  Google Scholar 

  43. Lombardi, C.; Manzini, S.; Saporito, A.; Vanzi, M.: A physically based mobility model for numerical simulation of nonplanar devices. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 7, 1164–1171 (1988)

    Article  Google Scholar 

  44. 3D FinFET simulation with Density Gradient (DG) quantum correction model. http://www.cogenda.com/article/examples#FinFET-dg. Accessed 15 Nov 2016

  45. Li, Y.; Hwang, C.-H.: Nanoscale transistors. In: Wiederrecht, G.P. (ed.) Handbook of Nanoscale Optics and Electronics, pp. 167–238. Elsevier, The Netherlands (2010)

    Google Scholar 

  46. Abraham, A.: Artificial neural networks. In: Sydenham, P.H., Thorn, R. (eds.) Handbook of Measuring System Design. Wiley, Hoboken (2005)

    Google Scholar 

  47. Mathworks\({}^{\textregistered }\). Neural Network Toolbox. https://in.mathworks.com/help/nnet/getting-started-with-neural-network-toolbox.html

  48. Cheung, N.J.; Ding, X.-M.; Shen, H.-B.: Adaptive firefly algorithm: parameter analysis and its application. PLoS ONE 9(1–12), e112634 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navneet Kaur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, N., Rattan, M. & Gill, S.S. Design and Optimization of Novel Shaped FinFET. Arab J Sci Eng 44, 3101–3116 (2019). https://doi.org/10.1007/s13369-018-3428-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3428-3

Keywords

Navigation