Skip to main content

Advertisement

Log in

Multi-Agent Metaheuristic Framework for Thermal Design Optimization of a Shell and Tube Evaporator Operated with \(\hbox {R134a/Al }_{2}\hbox {O}_{3}\) Nanorefrigerant

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study proposes a brand new practical multi-agent optimization framework based on an intelligent collaborative interaction between some prevalent metaheuristic algorithms available in the literature. Proposed optimization architecture is built on widely known and reputed master–slave model assisted with some useful and promising modifications. Conventional stochastic-based optimization algorithms including Particle Swarm Optimization, Crow Search Algorithm, Differential Evolution, and Global Best Algorithm are structurally coordinated to form the slave populations, while the best solutions obtained from these slave subpopulations are forming the master individuals. Contrary to the traditional master–slave approach, master individuals in this proposed framework becomes more functional by performing an extensive local search over numerical results of the best slave individuals. Main aim in constructing such a highly devised multi-agent algorithm is to maintain an effective communication domain between slave individuals (agents) as well as to enhance the capabilities of the cooperative search mechanism through the systematic combination of metaheuristics. Optimization performance of the proposed framework is tested on a suite of 29 optimization benchmark functions. Proposed optimization method surpasses the compared optimization algorithms in 27 out of 29 problems and proves its solution efficiency in multidimensional optimization problems. Then, proposed strategy is applied on single and multi-objective thermal design of a shell and tube evaporator operated with \(\hbox {R134a/Al}_{2}\hbox {O}_{3}\) nanorefrigerant. It is seen that maximum overall heat transfer coefficient is increased by 18.1% and minimum total cost of heat exchanger is reduced by 5.1% in the case of incorporating \(\hbox {Al}_{2}\hbox {O}_{3}\) nanoparticles into R134a.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(A_\mathrm{s}\) :

Heat exchange area (\(\hbox {m}^{2}\))

\(a_\mathrm{s}\) :

Cross-sectional area normal to flow (\(\hbox {m}^{2}\))

B :

Baffle spacing (m)

\(C_\mathrm{p}\) :

Specific heat (kJ/kgK)

\(C_\mathrm{e}\) :

Energy cost (€/kWh)

\(C_\mathrm{l}\) :

Shell side clearance (m)

\(C_\mathrm{i}\) :

Capital investment cost (€)

\(C_\mathrm{np}\) :

Cost of nanoparticle (€)

\(C_\mathrm{o}\) :

Annual operation cost (€/year)

\(C_\mathrm{od}\) :

Total operating cost (€)

D :

Problem dimension

\(D_\mathrm{e}\) :

Hydraulic shell diameter (m)

\(D_\mathrm{s}\) :

Shell inside diameter (m)

d :

Tube diameter (m)

\(d_\mathrm{p}\) :

Nanoparticle diameter (m)

\(f_\mathrm{s}\) :

Shell side friction factor

F :

Correction factor

\(F_\mathrm{PD}\) :

Nanoparticle enhancement factor

G :

Mass velocity (\(\hbox {kg/m}^{2}\hbox {s}\))

H :

Annual operating time (h/year)

h :

Heat transfer coefficient (\(\hbox {W/m}^{2}\hbox {K}\))

i :

Annual discount rate (%)

k :

Heat conductivity (W/mK)

L :

Tube length (m)

\(\dot{m}\) :

Mass flow rate (kg/s)

N :

Population size

ny:

Equipment life (year)

\(N_\mathrm{p}\) :

Number of tube pass

\(N_\mathrm{t}\) :

Total number of tubes

P :

Pumping power (W)

Pr :

Prandtl number

\(P_\mathrm{t}\) :

Tube pitch (m)

\(\Delta P\) :

Pressure drop (Pa)

Re :

Reynolds number

Q :

Imposed heat load (W)

\(R_\mathrm{f}\) :

Fouling resistance (\(\hbox {m}^{2}\hbox {K/W}\))

T :

Temperature (\(\hbox {K-}^{\circ }\hbox {C}\))

\(\Delta T_\mathrm{LMTD}\) :

Logarithmic mean temperature difference

v :

Working fluid velocity (m/s)

x :

Vapour quality

U :

Overall heat transfer coefficient (\(\hbox {W/m}^{2}\hbox {K}\))

\(\mu \) :

Dynamic viscosity (Pa s)

\(\rho \) :

Density (\(\hbox {kg/m}^{3}\))

\(\eta \) :

Pumping efficiency

\(\phi \) :

Nanoparticle volume concentration (%), Chaotic random number

i:

Inlet

L:

Liquid

n:

Nanoparticle

o:

Outlet

r:

Refrigerant

s:

Shell side

t:

Tube side

TP:

Two phase

w:

Wall

References

  1. Neapolitan, R.; Naimipour, K.: Foundations of Algorithms Using C++ Pseudo Code. Jones Barlett Publishers, Burlington (2004)

    MATH  Google Scholar 

  2. Wolpert, D.; Macready, W.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1, 67–82 (1997)

    Article  Google Scholar 

  3. Verma, A.K.; Sirvaiya, A.: Intelligent prediction of Langmuir isotherms of Gondwana coals in India. J. Pet. Explor. Prod. Technol. 6, 135–143 (2016)

    Article  Google Scholar 

  4. Singh, T.N.; Kanchan, R.; Salga, K.; Verma, A.K.: Prediction of p-wave velocity and anisotropic property of rock using artificial neural network technique. J. Sci. Ind. Res. 63, 32–33 (2004)

    Google Scholar 

  5. Singh, T.N.; Verma, A.K.; Singh, V.; Sahu, A.: Slake durability study of shaly rock and its predictions. Environ. Geol. 47(2), 256–253 (2005)

    Google Scholar 

  6. Cholette, M.E.; Borghesani, P.; Gialleonardo, E.D.; Braghin, B.: Using support vector machines for the computationally efficient identification of the acceptable design parameters in computer-aided engineering applications. Expert Syst. Appl. 81, 39–52 (2017)

    Article  Google Scholar 

  7. Riessen, B.; Negenborn, R.R.; Dekker, R.: Real-time contained transport planning with decision trees based on offline obtained optimal solutions. Decis. Support Syst. 89, 1–16 (2016)

    Article  Google Scholar 

  8. Andrejiova, M.; Grincova, A.; Marasova, D.: Failure analysis of rubber composites under dynamic impact loading by logistic regression. Eng. Fail. Anal. 84, 311–319 (2018)

    Article  Google Scholar 

  9. Ikeda, S.; Ooka, R.: Metaheuristic optimization methods for a comprehensive operating schedule of battery, thermal energy storage, and heat source in a building energy systems. Appl. Energy 151, 192–205 (2015)

    Article  Google Scholar 

  10. Cavazzini, G.; Bari, S.; Pavesi, G.; Ardizzon, G.: A multi-fluid PSO-based algorithm for the search of the best performance of sub-critical Organic Rankine Cycles. Energy 129, 42–58 (2017)

    Article  Google Scholar 

  11. Boyaghchi, F.A.; Heidarnejad, P.: Thermoeconomic assessment and multi objective optimization of a solar micro CCHP based on Organic Rankine Cycle for domestic application. Energy Convers. Manag. 97, 224–234 (2015)

    Article  Google Scholar 

  12. Ponce-Ortega, J.M.; Serna-Gonzalez, M.; Jimenez Gutierrez, A.: Use of genetic algorithms for optimal design of shell-and-tube heat exchangers. Appl. Therm. Eng. 29, 203–209 (2009)

    Article  Google Scholar 

  13. Patel, V.K.; Rao, R.V.: Design optimization of shell and tube heat exchanger using particle swarm optimization technique. Appl. Therm. Eng. 30, 1417–1425 (2010)

    Article  Google Scholar 

  14. Sahin, A.S.; Kilic, B.; Kilic, U.: Design and economic optimization of shell and tube heat exchangers using Artificial Bee Colony (ABC) algorithm. Energy Convers. Manag. 52, 3356–3362 (2011)

    Article  Google Scholar 

  15. Hadidi, A.; Nazari, A.: Design and economic optimization of shell and tube heat exchangers using biogeography-based (BBO) algorithm. Appl. Therm. Eng. 51, 1263–1272 (2013)

    Article  Google Scholar 

  16. Jaradat, G.; Ayob, M.; Almarashdeh, I.: The effect of elite pool in hybrid population-based meta-heuristic for solving combinatorial optimization problems. Appl. Soft Comput. 44, 45–56 (2016)

    Article  Google Scholar 

  17. Gherbi, Y.A.; Bouzeboudja, H.; Gherbi, F.Z.: The combined economic environmental dispatch using new hybrid metaheuristic. Energy 115, 468–477 (2016)

    Article  Google Scholar 

  18. Mohebbi, S.; Shafaei, R.: E-supply network coordination: the design of intelligent agents for buyer–supplier dynamic negotitations. J. Intell. Manuf. 23, 375–391 (2012)

    Article  Google Scholar 

  19. Ayhan, M.B.; Aydin, M.E.; Oztemel, E.: A multi-agent based approach for change management in manufacturing enterprises. J. Intell. Manuf. 26, 975–988 (2015)

    Article  Google Scholar 

  20. Kennedy, J.; Eberhart, R.: Particle Swarm Optimization. In: Proceedings of IEEE International Conference on Neural Networks, Vol. 4, pp. 1942–1948 (1994)

  21. Storn, R.; Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Askarzadeh, A.: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput. Struct. 169, 1–12 (2016)

    Article  Google Scholar 

  23. Turgut, O.E.; Coban, M.T.: Thermal design of spiral heat exchangers and heat pipes through global best algorithm. Heat Mass Transf. 53, 899–916 (2017)

    Article  Google Scholar 

  24. Kern, D.Q.: Process Heat Transfer. Mc Graw-Hill, New York (1950)

    Google Scholar 

  25. Shah, M.M.: A new correlation for heat transfer during boiling flow through pipes. ASHRAE Trans. 82, 66–86 (1976)

    Google Scholar 

  26. Peng, H.; Ding, G.; Jiang, W.; Hu, H.; Gao, Y.: Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube. Int. J. Refrig. 32, 1259–1270 (2009)

    Article  Google Scholar 

  27. Peng, H.; Ding, G.; Jiang, W.; Hu, H.; Gao, Y.: Measurement and correlation of frictional pressure drop of refrigerant based nanofluid flow boiling inside a horizontal smooth tube. Int. J. Refrig. 32, 1756–1764 (2009)

    Article  Google Scholar 

  28. Müller-Steinhagen, H.; Heck, K.: A simple friction pressure drop correlation for two-phase flow in pipes. Chem. Eng. Process. 20, 297–308 (1986)

    Article  Google Scholar 

  29. Peters, M.S.; Timmerhaues, K.D.: Plant Design and Economics for Chemical Engineers. McGraw-Hill, New York (1991)

    Google Scholar 

  30. Caputo, A.C.; Pelagagge, P.M.; Salini, P.: Heat exchanger design based on economic optimization. Appl. Therm. Eng. 28, 1151–1159 (2008)

    Article  Google Scholar 

  31. Taal, M.; Bulatov, I.; Klemes, P.; Stehlik, P.: Cost estimation and energy price forecast for economic evaluation of retrofit project. Appl. Therm. Eng. 23, 1819–1835 (2003)

    Article  Google Scholar 

  32. Mariani, V.C.; Duck, A.R.K.; Guerra, F.A.; Coelho, LdS; Rao, R.V.: A chaotic quantum behaved particle swarm approach applied to optimization of heat exchangers. Appl. Therm. Eng. 42, 119–128 (2012)

    Article  Google Scholar 

  33. Meignan, D.; Creput, J.; Koukam, A.: A coalition-based metaheuristic for the vehicle routing problem. In: Proceeding of IEEE Congress on Evolutionary Computation, CEC 2008, pp. 1176–1182 (2008)

  34. Meignan, D.; Koukam, A.; Creput, J.C.: Coalition-based metaheuristic: a self-adaptive metaheuristic using reinforcement learning and mimetism. J. Heuristics 16, 859–879 (2010)

    Article  MATH  Google Scholar 

  35. Milano, M.; Roli, A.: MAGMA: a multiagent architecture for metaheuristics. IEEE Trans. Syst. Man Cybern. B Cybern. 34, 925–941 (2004)

    Article  Google Scholar 

  36. Aydin, M.E.: Metaheuristic agent teams for job shop scheduling problems. LNAI 4659, 185–194 (2007)

    Google Scholar 

  37. Crainic, T.; Toulouse, M.: Parallel strategies for meta-heuristics. In: State-of-the-Art Handbook in Metaheuristics, Kluwer, Dordrecht, pp. 475–513 (2003)

  38. Talbi, E.G.; Bachelet, V.: Cosearch: a parallel cooperative metaheuristic. JMMA 5, 5–22 (2006)

    MathSciNet  MATH  Google Scholar 

  39. Aydin, M.E.; Fogarty, T.C.: Teams of autonomous agents for job-scheduling problems: an experimental study. J. Intell. Manuf. 15, 455–462 (2004)

    Article  Google Scholar 

  40. Jedrzejowicz, P.; Wierzbowska, I.: Jade-based a-team environment. In: 6th International Conference on Computational Science, pp. 28–31 (2006)

  41. Civicioglu, P.: Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm. Comput. Geosci. 46, 229–247 (2012)

    Article  Google Scholar 

  42. May, R.M.: Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976)

    Article  MATH  Google Scholar 

  43. Opitz, D.; Maclin, R.: Popular ensemble methods: an empirical study. J. Artif. Intell. Res. 11, 169–198 (1999)

    Article  MATH  Google Scholar 

  44. Yen, G.G.; Daneshyari, M.: Diversity-based information exchange among multiple swarms in particle swarm optimization. Int. J. Comput. Intell. Appl. 7, 57–75 (2008)

    Article  MATH  Google Scholar 

  45. Zhan, Z.; Zhang, J.: Parallel particle swarm optimization with adaptive asynchronous migration strategy. In: Hua, A., Chag, S.L. (eds.) Algorithms and Architectures for Parallel Processing, Lecture Notes in Computer Science, vol. 5574, pp. 490–501. Springer, Berlin (2009)

    Chapter  Google Scholar 

  46. Akbari, R.; Ziarati, K.A.: A cooperative approach to bee swarm optimization. JISE 27, 799–818 (2011)

    MATH  Google Scholar 

  47. Guo, Y.-N.; Liu, D.; Cheng, D.: Multi population cooperative cultural algorithms. In: Huang, D.S., Gan, Y., Premaratne, P., Han, K. (eds.) Bio-inspired Computing And Applications, Lecture Notes in Computer Science, vol. 6840, pp. 199–206. Springer, Berlin (2012)

    Chapter  Google Scholar 

  48. Jaddi, N.S.; Abdullah, S.; Hamdan, A.R.: Multi-population cooperative bat algorithm based optimization of artificial neural network model. Inf. Sci. 294, 628–644 (2015)

    Article  MathSciNet  Google Scholar 

  49. Civicioglu, P.: Backtracking search optimization algorithm for numerical optimization problems. Appl. Math. Comput. 219, 8121–8144 (2013)

    MathSciNet  MATH  Google Scholar 

  50. Yadav, P.; Kumar, R.; Panda, S.K.; Chang, C.S.: An intelligent tuned harmony search algorithm for optimization. Inf. Sci. 196, 47–72 (2012)

    Article  Google Scholar 

  51. Yang, X.S.: A new metaheuristic bat-algorithm. In: Nature Inspired Cooperative Strategies for Optimization (NISCO 2010), Studies in Computational Intelligence, Vol. 284, pp. 65–74 (2010)

  52. Sun, J.; Feng, B.; Xu, W.: Particle swarm optimization with particles having quantum behaviour. In: Proceedings of Congress on Evolutionary Computation, pp. 325–331 (2004)

  53. Erol, O.K.; Eksin, I.: A new optimization method: big bang–big crunch. Adv. Eng. Softw. 37, 106–111 (2006)

    Article  Google Scholar 

  54. Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl. Based Syst. 89, 228–249 (2015)

    Article  Google Scholar 

  55. Askarzadeh, A.: Bird mating optimizer: an optimization algorithm inspired by bird mating strategies. Commun. Nonlinear Sci. 19, 1213–1228 (2014)

    Article  MathSciNet  Google Scholar 

  56. Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A.: Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput. Appl. 27, 495–513 (2015)

    Article  Google Scholar 

  57. Ahmadi, M.H.; Ahmadi, M.A.; Mohammadi, A.H.; Mehrpooya, M.; Feidt, M.: Thermodynamic optimization of Stirling heat pump based on multiple criteria. Energy Convers. Manag. 80, 319–328 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oguz Emrah Turgut.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turgut, O.E. Multi-Agent Metaheuristic Framework for Thermal Design Optimization of a Shell and Tube Evaporator Operated with \(\hbox {R134a/Al }_{2}\hbox {O}_{3}\) Nanorefrigerant. Arab J Sci Eng 44, 777–801 (2019). https://doi.org/10.1007/s13369-018-3279-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3279-y

Keywords

Navigation