Skip to main content

Advertisement

Log in

A Theoretical Mechanism Study on the Ethylenediamine Grafting on Graphene Oxides for \(\hbox {CO}_{2}\) Capture

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The mechanism of ethylenediamine (EDA) grafting on graphene oxides (GO) for \(\hbox {CO}_{2}\) capture is investigated in detail by Quantum chemical calculation. Theoretical results show that, for epoxy on GO, EDA can be grafted via attacking activated C atoms which are adjacent to epoxy, while for carboxyl, EDA can be grafted via attacking C atom of carboxyl directly, and the grafting reaction can be catalyzed by \(\hbox {H}_{2}\hbox {O}\) and EDA. The activation energy of EDA grafting on carboxyl (23.2 kcal/mol) is lower than that on epoxy (28.6 kcal/mol), which indicates that carboxyl can be grafted more easily. Moreover, the activation energy of EDA de-grafting on carboxyl (50.7 kcal/mol) is much higher than that on epoxy (19.8 kcal/mol), which indicates that the thermal stability of EDA-carboxyl-grafted GO is much better. This illuminates that carboxyl can be grafted more effectively. The EDA grafting ability of oxygen functional groups on GO is that: carboxyl > epoxy > hydroxyl. The stronger the oxidizing ability of functional groups, the stronger the ability of amine grafting to functional groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, M.; Lawal, A.; Stephenson, P.; Sidders, J.: Post-combustion \(\text{ CO }_{2}\) capture with chemical absorption: a state-of-the-art review. Chem. Eng. Res. Des. 89(9), 1609–1624 (2011)

    Article  Google Scholar 

  2. El Hadri, N.; Quang, D.V.; Goetheer, E.L.V.: Aqueous amine solution characterization for post-combustion \(\text{ CO }_{2}\) capture process. Appl. Energy 185, 1433–1449 (2017)

    Article  Google Scholar 

  3. Goto, K.; Yogo, K.; Higashii, T.: A review of efficiency penalty in a coal-fired power plant with post-combustion \(\text{ CO }_{2}\) capture. Appl. Energy 111, 710–720 (2013)

    Article  Google Scholar 

  4. Sanz-Pérez, E.S.; Dantas, T.C.M.; Arencibia, A.: Reuse and recycling of amine-functionalized silica materials for \(\text{ CO }_{2}\) adsorption. Chem. Eng. J. 308(15), 1021–1033 (2017)

    Article  Google Scholar 

  5. Loganathan, S.; Ghoshal, A.K.: Amine tethered pore-expanded MCM-41: a promising adsorbent for \(\text{ CO }_{2}\) capture. Chem. Eng. J. 308(15), 827–839 (2017)

    Article  Google Scholar 

  6. Bhagiyalakshmi, M.; Yun, L.J.; Anuradha, R.; Jang, H.T.: Synthesis of chloropropylamine grafted mesoporous MCM-41, MCM-48 and SBA-15 from rice husk ash: their application to \(\text{ CO }_{2}\) chemisorption. J. Porous Mater. 17, 475–484 (2010)

    Article  Google Scholar 

  7. Yang, S.T.; Kim, J.Y.; Kim, J.; et al.: \(\text{ CO }_{2}\) capture over amine-functionalized MCM-22, MCM-36 and ITQ-2. Fuel 97, 435–442 (2012)

    Article  Google Scholar 

  8. Watabe, T.; Yogo, K.: Isotherms and isosteric heats of adsorption for \(\text{ CO }_{2}\) in amine-functionalized mesoporous silicas. Sep. Purif. Technol. 120, 20–23 (2013)

    Article  Google Scholar 

  9. Kim, J.Y.; Kim, J.; Yang, S.T.: Mesoporous SAPO-34 with amine-grafting for \(\text{ CO }_{2}\) capture. Fuel 108, 515–520 (2013)

    Article  Google Scholar 

  10. Srivastava, R.; Srinivas, D.; Ratnasamy, P.: Sites for \(\text{ CO }_{2}\) activation over amine-functionalized mesoporous Ti(Al)-SBA-15 catalysts. Microporous Mesoporous Mater. 90, 314–326 (2006)

    Article  Google Scholar 

  11. Wang, X.; Chen, L.; Guo, Q.: Development of hybrid amine-functionalized MCM-41 sorbents for \(\text{ CO }_{2}\) capture. Chem. Eng. J. 160, 573–581 (2015)

    Article  Google Scholar 

  12. Linneen, N.N.; Pfeffer, R.; Lin, Y.S.: \(\text{ CO }_{2}\) adsorption performance for amine grafted particulate silica aerogels. Chem. Eng. J. 254, 190–197 (2014)

    Article  Google Scholar 

  13. Ko, Y.G.; Lee, H.J.; Oh, H.C.: Amines immobilized double-walled silica nanotubes for CO2 capture. J. Hazard. Mater. 250–251, 53–60 (2013)

    Article  Google Scholar 

  14. Zhu, Y.; Murali, S.; Cai, W.; et al.: Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010)

    Article  Google Scholar 

  15. Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S.: The Chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010)

    Article  Google Scholar 

  16. Shanmugharaj, A.M.; Yoon, J.H.; Yang, W.J.; Ryu, S.H.: Synthesis, characterization, and surface wettability properties of amine functionalized graphene oxide films with varying amine chain lengths. J. Colloid Interface Sci. 401, 148–154 (2013)

    Article  Google Scholar 

  17. Sablok, K.; Bhalla, V.; Sharma, P.; Kaushal, R.; Chaudhary, S.; Suri, C.R.: Amine functionalized graphene oxide/CNT nanocomposite for ultrasensitive electrochemical detection of trinitrotoluene. J. Hazard. Mater. 248–249, 322–328 (2013)

    Article  Google Scholar 

  18. Shen, J.; Liu, G.; Huang, K.; Jin, W.; Lee, K.R.; Xu, N.: Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient \(\text{ CO }_{2}\) capture. Angew. Chem. Int. Ed. 54, 578–582 (2015)

    Google Scholar 

  19. Xin, Q.; Li, Z.; Li, C.: Enhancing the \(\text{ CO }_{2}\) separation performance of composite membranes by the incorporation of amino acid-functionalized graphene oxide. J. Mater. Chem. A 3, 6629–6641 (2015)

    Article  Google Scholar 

  20. Quan, S.; Li, S.W.; Xiao, Y.C.; Shao, L.: \(\text{ CO }_{2}\)-selective mixed matrix membranes (MMMs) containing graphene oxide (GO) for enhancing sustainable \(\text{ CO }_{2}\) capture. Int. J. Greenh. Gas Control 56, 22–29 (2017)

    Article  Google Scholar 

  21. Zhao, Y.; Dinga, H.; Zhong, Q.: Preparation and characterization of aminated graphite oxide for \(\text{ CO }_{2}\) capture. Appl. Surf. Sci. 258, 4301–4307 (2012)

    Article  Google Scholar 

  22. Kim, M.C.; Hwang, G.S.; Ruoff, R.S.: Ruoff Epoxide reduction with hydrazine on graphene: a first principles study. J. Chem. Phys. 131, 064704l (2009)

    Article  Google Scholar 

  23. Al-Aqtash, N.; Vasiliev, I.: Ab initio study of carboxylated graphene. J. Phys. Chem. C 113, 12970–12975 (2009)

    Article  Google Scholar 

  24. Lazar, P.; Karlicky, F.; Jurecka, P.; et al.: Adsorption of small organic molecules on graphene. J. Am. Chem. Soc. 135, 6327–6377 (2013)

    Article  Google Scholar 

  25. Gholizadeh, R.; Yu, Y.X.: N2O + CO reaction over Si- and Se-doped graphenes: an ab initio DFT study. Appl. Surf. Sci. 357, 1187–1195 (2015)

    Article  Google Scholar 

  26. Frisch, M.J.; Trucks, G.W.; Pople, J.A.; et al.: Gaussian 09. Gaussian, Inc, Pittsburgh (2009)

    Google Scholar 

  27. Lee, C.; Yang, W.; Parr, R.G.: Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)

    Article  Google Scholar 

  28. Becke, A.D.: Density functional thermochemistry III. The role of exact exchange correlation functions. J. Chem. Phys. 98(7), 5648–5652 (1993)

  29. Gauss, J.; Cremer, C.: Analytical evaluation of energy gradients in quadratic configuration interaction theory. Chem. Phys. Lett. 150(3–4), 280–286 (1988)

    Article  Google Scholar 

  30. Sydlik, S.A.; Swager, T.M.: Functional graphenic materials via a Jonhson–Claisen rearrangement. Adv. Funct. Mater. 23, 1873–1882 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengcheng Wen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Z., Chen, W., Li, Y. et al. A Theoretical Mechanism Study on the Ethylenediamine Grafting on Graphene Oxides for \(\hbox {CO}_{2}\) Capture. Arab J Sci Eng 43, 5949–5955 (2018). https://doi.org/10.1007/s13369-018-3087-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3087-4

Keywords

Navigation