Skip to main content
Log in

Feeding with Single Strains Versus Mixed Cultures of Lactic Acid Bacteria and Bacillus subtilis KKU213 Affects the Bacterial Community and Growth Performance of Broiler Chickens

  • Research Article - Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study sought to isolate lactic acid bacteria (LAB) from chicken intestines and caeca and apply them as probiotics in broilers. Out of the 247 isolates, 14 LAB were selected based on their tolerance to pH 3 and 0.5% bile salt conditions and were tested against Salmonella serovars using two assay methods: (1) bacterial cells and double layers and (2) cell-free supernatants and agar well diffusion. The chicken isolates CA4, CH24 and CH33 strongly inhibited Salmonella Typhimurium ATCC13311 and S. Enteritidis. The selected strains were identified via 16S rDNA sequencing as Enterococcus faecium CA4, Enterococcus durans CH33 and Lactobacillus salivarius CH24. Only CH33 survived in simulated gastric juice and intestinal juice with survival rates of 90 and 18%, respectively. All three chicken LAB strains as well as food-originating Pediococcus acidilactici SH8 and bacteriocin-producing Bacillus subtilis KKU213 were tested in broilers. Single strains and mixed cultures of KKU213 and the four LAB strains were orally fed to 1-day-old male Cobb broilers, which were then raised for 45 days. Broilers fed LAB strains demonstrated higher numbers of LAB than the groups fed only B. subtilis KKU213 or mixed cultures. Among all treatments, the broilers fed B. subtilis KKU213 on days 1 and 3 and LAB on day 5 (T8) had the highest body weights and high-density lipid levels and the lowest uric acid levels. Therefore, a combination of bacterial species originating from various sources exhibits potential as a probiotic mixture to promote health in broilers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Boonthai, T.; Vuthiphandchai, V.; Nimrat, S.: Probiotic bacteria effects on growth and bacterial composition of black tiger shrimp (Penaeus monodon). Aquac. Nutr. 17, 634–644 (2011)

    Article  Google Scholar 

  2. Iaconelli, C.; Lemetais, G.; Kechaou, N.; Chain, F.; Bermudez-Humaran, L.G.; Langella, P.; Gervais, P.; Beney, L.: Drying process strongly affects probiotics viability and functionalities. J. Biotechnol. 214, 17–26 (2015)

    Article  Google Scholar 

  3. Pringsulaka, O.; Rueangyotchanthana, K.; Suwannasai, N.; Watanapokasin, R.; Amnueysit, P.; Sunthornthummas, S.; Sukkhum, S.; Sarawaneeyaruk, S.; Rangsiruji, A.: In vitro screening of lactic acid bacteria for multi-strain probiotics. Livest. Sci. 174, 66–73 (2015)

    Article  Google Scholar 

  4. FAO/WHO: FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food. World Health Organization, Geneva (2002)

    Google Scholar 

  5. Matamoros, S.; Pilet, M.F.; Gigout, F.; Prévost, H.; Leroi, F.: Selection and evaluation of seafood-borne psychrotrophic lactic acid bacteria as inhibitors of pathogenic and spoilage bacteria. Food Microbiol. 26, 638–644 (2009). https://doi.org/10.1016/j.fm.2009.04.011

    Article  Google Scholar 

  6. Lay, C.L.; Mounier, J.; Vasseur, V.; Weill, A.; Blay, G.L.: In vitro and in situ screening of lactic acid bacteria and propionibacteria antifungal activities against bakery product spoilage molds. Food Control 60, 247–255 (2016). https://doi.org/10.1016/j.foodcont.2015.07.034

    Article  Google Scholar 

  7. Victoria Moreno-Arribas, M.; Carmen Polo, M.; Jorganes, F.; Muñoz, R.: Screening of biogenic amine production by lactic acid bacteria isolated from grape must and wine. Int. J. Food Microbiol. 84, 117–123 (2003). https://doi.org/10.1016/S0168-1605(02)00391-4

    Article  Google Scholar 

  8. Raghavendra, P.; Halami, P.M.: Screening, selection and characterization of phytic acid degrading lactic acid bacteria from chicken intestine. Int. J. Food Microbiol. 133(1), 129–134 (2009). https://doi.org/10.1016/j.ijfoodmicro.2009.05.006

    Article  Google Scholar 

  9. Oh, Y.J.; Jung, D.S.: Evaluation of probiotic properties of Lactobacillus and Pediococcus strains isolated from Omegisool, a traditionally fermented millet alcoholic beverage in Korea. LWT Food Sci. Technol. 63, 437–444 (2015)

    Article  Google Scholar 

  10. García-Ruiz, A.; Gonzalez de Llano, D.; Esteban-Fernandez, A.; Requena, T.; Bartolome, B.; Moreno-Arribas, M.V.: Assessment of probiotic properties in lactic acid bacteria isolated from wine. Food Microbiol. 44, 220–225 (2014). https://doi.org/10.1016/j.fm.2014.06.015

    Article  Google Scholar 

  11. Öz, E.; Kaban, G.; Baris, Ö.; Kaya, M.: Isolation and identification of lactic acid bacteria from pastırma. Food Control 77, 158–162 (2017). https://doi.org/10.1016/j.foodcont.2017.02.017

    Article  Google Scholar 

  12. Dertli, E.; Mercan, E.; Arıcı, M.; Yılmaz, M.T.; Sağdıç, O.: Characterisation of lactic acid bacteria from Turkish sourdough and determination of their exopolysaccharide (EPS) production characteristics. LWT Food Sci. Technol. 71, 116–124 (2016). https://doi.org/10.1016/j.lwt.2016.03.030

    Article  Google Scholar 

  13. Sakaridis, I.; Soultos, N.; Dovas, C.I.; Papavergou, E.; Ambrosiadis, I.; Koidis, P.: Lactic acid bacteria from chicken carcasses with inhibitory activity against Salmonella spp. and Listeria monocytogenes. Anaerobe 18, 62–66 (2012). https://doi.org/10.1016/j.anaerobe.2011.09.009

    Article  Google Scholar 

  14. Abushelaibi, A.; Al-Mahadin, S.; El-Tarabily, K.; Shah, N.P.; Ayyash, M.: Characterization of potential probiotic lactic acid bacteria isolated from camel milk. LWT Food Sci. Technol. 79, 316–325 (2017). https://doi.org/10.1016/j.lwt.2017.01.041

    Article  Google Scholar 

  15. Benavides, A.B.; Ulcuango, M.; Yépez, L.; Tenea, G.N.: Assessment of the in vitro bioactive properties of lactic acid bacteria isolated from native ecological niches of Ecuador. Rev. Argent. Microbiol. 48(3), 236–244 (2016). https://doi.org/10.1016/j.ram.2016.05.003

    Google Scholar 

  16. Löfström, C.; Hintzmann, A.; Sørensen, G.; Baggesen, D.L.: Outbreak of Salmonella enterica serovar Typhimurium phage type DT41 in Danish poultry production. Vet. Microbiol. 178, 167–172 (2015). https://doi.org/10.1016/j.vetmic.2015.04.017

    Article  Google Scholar 

  17. Wang, Y.; Yang, B.; Wu, Y.; Zhang, Z.; Meng, X.; Xi, M.; Wang, X.; Xia, X.; Shi, X.; Wang, D.; Meng, J.: Molecular characterization of Salmonella enterica serovar Enteritidis on retail raw poultry in six provinces and two National cities in China. Food Microbiol. 46, 74–80 (2015). https://doi.org/10.1016/j.fm.2014.07.012

    Article  Google Scholar 

  18. Mani-López, E.; García, H.S.; López-Malo, A.: Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Res. Int. 45, 713–721 (2012). https://doi.org/10.1016/j.foodres.2011.04.043

    Article  Google Scholar 

  19. Awad, W.A.; Ghareeb, K.; Abdel-Raheem, S.; Bohm, J.: Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poult. Sci. 88, 49–55 (2009)

    Article  Google Scholar 

  20. Cao, G.T.; Zeng, X.F.; Chen, A.G.; Zhou, L.; Zhang, L.; Xiao, Y.P.; et al.: Effects of a probiotic, Enterococcus faecium, on growth performance, intestinal morphology, immune response, and cecal microflora in broiler chickens challenged with Escherichia coli K88. Poult. Sci. 92, 2949–2955 (2013)

    Article  Google Scholar 

  21. Ashayerizadehl, A.; Dabiri, N.; Mirzadeh, K.; Ghorbani, M.R.: Effects of dietary inclusion of several biological feed additives on growth response of broiler chickens. Cell Anim. Biol. 5, 61–65 (2011)

    Google Scholar 

  22. Olnood, C.G.; Beski, S.S.; Iji, P.A.; Choct, M.: Delivery routes for probiotics: effects on broiler performance, intestinal morphology and gut microflora. Anim. Nutr. 1, 192–202 (2015b). https://doi.org/10.1016/j.aninu.2015.07.002

    Article  Google Scholar 

  23. Olnood, C.G.; Beski, S.S.M.; Mingan Choct, M.; Iji, P.A.: Novel probiotics: their effects on growth performance, gut development, microbial community and activity of broiler chickens. Anim. Nutr. 1, 184–191 (2015a). https://doi.org/10.1016/j.aninu.2015.07.003

    Article  Google Scholar 

  24. Mirmomeni, M.H.; Sajjadi Majd, S.; Sisakhtnezhad, S.; Doranegard, F.: Comparison of the three methods for DNA extraction from paraffim-embedded tissues. J. Biol. Sci. 10, 261–266 (2010)

    Article  Google Scholar 

  25. Babot, J.D.; Argañaraz-Martínez, E.; Saavedra, L.; Apella, M.C.; Chaia, A.P.: Selection of indigenous lactic acid bacteria to reinforce the intestinal microbiota of newly hatched chicken–relevance of in vitro and ex vivo methods for strains characterization. Res. Vet. Sci. 97, 8–17 (2014)

    Article  Google Scholar 

  26. Khochamit, N.; Siripornadulsil, S.; Sukon, P.; Siripornadulsil, W.: Antibacterial activity and genotypic-phenotypic characteristics of bacteriocin-producing Bacillus subtilis KKU213: potential as a probiotic strain. Microbiol. Res. 170, 36–50 (2015). https://doi.org/10.1016/j.micres.2014.09.004

    Article  Google Scholar 

  27. Favaro, L.; Todorov, S.D.: Bacteriocinogenic LAB strains for fermented meat preservation: perspectives, challenges, and limitations. Probiotics Antimicrob. Proteins 9(4), 444–458 (2017). https://doi.org/10.1007/s12602-017-9330-6

    Article  Google Scholar 

  28. Apajalahti, J.; Vienola, K.: Interaction between chicken intestinal microbiota and protein digestion. Anim. Feed Sci. Technol. 221, 323–330 (2016)

    Article  Google Scholar 

  29. Özcelik, S.; Kuley, E.; Özogul, F.: Formation of lactic, acetic, succinic, propionic, formic and butyric acid by lactic acid bacteria. LWT Food Sci. Technol. 73, 536–542 (2016). https://doi.org/10.1016/j.lwt.2016.06.066

    Article  Google Scholar 

  30. Maragkoudakis, P.A.; Mountzouris, K.C.; Psyrras, D.; Cremonese, S.; Fischer, J.; Cantor, M.D.; Tsakalidou, E.: Functional properties of novel protective lactic acid bacteria and application in raw chicken meat against Listeria monocytogenes and Salmonella enteritidis. Int. J. Food Microbiol. 130, 219–226 (2009). https://doi.org/10.1016/j.ijfoodmicro.2009.01.027

    Article  Google Scholar 

  31. Swetwiwathana, A.; Visessanguan, W.: Potential of bacteriocin-producing lactic acid bacteria for safety improvements of traditional Thai fermented meat and human health. Meat Sci. 109, 101–105 (2015). https://doi.org/10.1016/j.meatsci.2015.05.030

    Article  Google Scholar 

  32. Bartkiene, E.; Bartkevics, V.; Mozuriene, E.; Krungleviciute, V.; Novoslavskij, A.; Santini, A.; Rozentale, I.; Juodeikiene, G.; Cizeikiene, D.: The impact of lactic acid bacteria with antimicrobial properties on biodegradation of polycyclic aromatic hydrocarbons and biogenic amines in cold smoked pork sausages. Food Control 71, 285–292 (2017). https://doi.org/10.1016/j.foodcont.2016.07.010

    Article  Google Scholar 

  33. Abriouel, H.; Franz, C.M.A.P.; Omar, N.B.; Glvezm, A.: Diversity and applications of Bacillus bacteriocins. FEMS Microbiol. Rev. 45, 201–32 (2011). https://doi.org/10.1111/j.1574-6976.2010.00244.x

    Article  Google Scholar 

  34. Argyri, A.; Zoumpopoulou, G.; Karatzas, K.G.; Tsakalidou, E.; Nychas, G.E.; Panagou, E.Z.; Tassou, C.C.: Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol. 33, 282–291 (2013). https://doi.org/10.1016/j.fm.2012.10.005

    Article  Google Scholar 

  35. Sonsa-Ard, N.; Rodtong, S.; Chikindas, M.L.; Yongsawatdigul, J.: Characterization of bacteriocin produced by Enterococcus faecium CN-25 isolated from traditionally Thai fermented fish roe. Food Control 54, 308–316 (2015). https://doi.org/10.1016/j.foodcont.2015.02.010

    Article  Google Scholar 

  36. Filho, R.A.C.P.; Díaz, S.J.A.; Fernando, F.S.; Chang, Y.-F.; Filho, R.L.A.; Junior, A.B.: Immunomodulatory activity and control of Salmonella Enteritidis colonization in the intestinal tract of chickens by Lactobacillus based probiotic. Vet. Immunol. Immunopathol. 167(1–2), 64–69 (2015)

    Article  Google Scholar 

  37. Carter, A.; Adams, M.; La Ragione, R.M.; Woodward, M.J.: Colonisation of poultry by Salmonella Enteritidis S1400 is reduced by combined administration of Lactobacillus salivarius 59 and Enterococcus faecium PXN-33. Vet. Microbiol. 199, 100–107 (2017). https://doi.org/10.1016/j.vetmic.2016.12.029

    Article  Google Scholar 

  38. Brisbin, J.T.; Gong, J.; Parvizi, P.; Sharif, S.: Effects of lactobacilli on cytokine expression by chicken spleen and cecal tonsil cells. Clin. Vaccine Immunol. 17, 1337–1343 (2010)

    Article  Google Scholar 

  39. Marranzino, G.; Villena, J.; Salva, S.; Alvarez, S.: Stimulation of macrophages by immunobiotic Lactobacillus strains: influence beyond the intestinal tract. Microbiol. Immunol. 56, 771–781 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Assistant Professor Dr. Peerapol Sukon and his colleagues from the Research Group for Preventive Technology in Livestock, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand, for their assistance with the care and use of laboratory animals according to the standard guidelines. This work was supported by Research and Researcher for Industry (RRi), the Thailand Research Fund (TRF), and the Master Program (Grant Nos. MSD58I0016, 590053) and Teacher Aood Local Farm, Sakon Nakhon, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilailak Siripornadulsil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buahom, J., Siripornadulsil, S. & Siripornadulsil, W. Feeding with Single Strains Versus Mixed Cultures of Lactic Acid Bacteria and Bacillus subtilis KKU213 Affects the Bacterial Community and Growth Performance of Broiler Chickens. Arab J Sci Eng 43, 3417–3427 (2018). https://doi.org/10.1007/s13369-017-3045-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-3045-6

Keywords

Navigation