Skip to main content

Advertisement

Log in

K-Doped Li-Rich Molybdenum-Based Oxide with Improved Electrochemical Properties for Lithium-Ion Batteries

  • Research Article - Special Issue - Functional Materials - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Li-rich molybdenum-based oxide (\(\hbox {Li}_{2}\hbox {MoO}_{3})\), which owns a layered structure similar to that of \(\hbox {Li}_{2}\hbox {MnO}_{3}\), has caused much attention as a kind of high-energy-density cathode material for Li-ion batteries. Although \(\hbox {Mo}^{4+}\) in the [\(\hbox {Li}\hbox {Mo}_{2}\)] slabs could be oxidized to \(\hbox {Mo}^{5+}/\hbox {Mo}^{6+ }\) easily, the \(\hbox {Li}_{2}\hbox {MoO}_{3 }\) might still suffer from a phase transformation from layered to disordered at a deeply charged state more than 4.4 V (vs. \(\hbox {Li}^{+}/\hbox {Li}\)) in the first cycle, resulting in fast capacity degradation. To resolve these issues, \(\hbox {K}^{+}\) ion is chosen to dope into the \(\hbox {Li}_{2}\hbox {MoO}_{3}\) crystal using a K-doped precursor \(\hbox {K}_{0.1}\hbox {MoO}_{3}\) that prepared by a hydrothermal method. The as-prepared \(\hbox {Li}_{1.9}\hbox {K}_{0.1}\hbox {MoO}_{3}\) sample showed nanobelt morphology and possessed a layered structure. Befitting from the chemical pre-insertion of \(\hbox {K}^{+}\), this doped sample exhibited a stable cycling life and an improved rate capability when operated over the potential range of 1.5–4.4 V (vs. \(\hbox {Li}^{+}/\hbox {Li}\)). The results suggest that chemical pre-insertion of \(\hbox {K}^{+}\) is an effective approach to improve the electrochemical properties of the \(\hbox {Li}_{2}\hbox {MoO}_{3 }\) cathode material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, J.; He, X.; Paillard, E.; Laszczynski, N.; Li, J.; Passerini, S.: Lithium- and manganese-rich oxide cathode materials for high-energy lithium ion batteries. Adv. Energy Mater. 6(21), 1600906 (2016)

    Article  Google Scholar 

  2. Luo, K.; Roberts, M.R.; Hao, R.; Guerrini, N.; Pickup, D.M.; Liu, Y.-S.; Edström, K.; Guo, J.; Chadwick, A.V.; Duda, L.C.; Bruce, P.G.: Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 8(7), 684–691 (2016)

    Article  Google Scholar 

  3. Wang, F.; Xiao, S.; Li, M.; Wang, X.; Zhu, Y.; Wu, Y.; Shirakawa, A.; Peng, J.: A nanocomposite of \(\text{ Li }_{2}\text{ MnO }{3}\) coated by \(\text{ FePO }_{4}\) as cathode material for lithium ion batteries. J. Power Sour. 287, 416–421 (2015)

    Article  Google Scholar 

  4. Zheng, J.; Myeong, S.; Cho, W.; Yan, P.; Xiao, J.; Wang, C.; Cho, J.; Zhang, J.-G.: Li- and Mn-rich cathode materials: challenges to commercialization. Adv Energy Mater. 7(6), 1601284 (2017)

    Article  Google Scholar 

  5. Xie, Y.; Saubanere, M.; Doublet, M.L.: Requirements for reversible extra-capacity in Li-rich layered oxides for Li-ion batteries. Energy Environ. Sci. 10(1), 266–274 (2017)

    Article  Google Scholar 

  6. Sun, K.; Peng, C.; Li, Z.; Xiao, Q.; Lei, G.; Xiao, Q.; Ding, Y.; Hu, Z.: Hybrid \(\text{ LiV }_{3}\text{ O }_{8}\)/carbon encapsulated \(\text{ Li }_{1.2}\text{ Mn }_{0.54}\text{ Co }_{0.13}\text{ Ni }_{0.13}\text{ O }_{2}\) with improved electrochemical properties for lithium ion batteries. RSC Adv. 6(34), 28729–28736 (2016)

    Article  Google Scholar 

  7. Wang, F.; Chang, Z.; Wang, X.; Wang, Y.; Chen, B.; Zhu, Y.; Wu, Y.: Composites of porous \(\text{ Co }_{3}\text{ O }_{4}\) grown on \(\text{ Li }_{2}\text{ MnO }{3}\) microspheres as cathode materials for lithium ion batteries. J. Mater. Chem. A 3, 4840–4845 (2015)

    Article  Google Scholar 

  8. Wang, F.; Liu, Z.; Wang, X.; Yuan, X.; Wu, X.; Zhu, Y.; Fu, L.; Wu, Y.: A conductive polymer coated \(\text{ MoO }_{3}\) anode enables an Al-ion capacitor with high performance. J. Mater. Chem. A 4, 5115–5123 (2016)

    Article  Google Scholar 

  9. Hu, X.; Zhang, W.; Liu, X.; Mei, Y.; Huang, Y.: Nanostructured Mo-based electrode materials for electrochemical energy storage. Chem. Soc. Rev. 44(8), 2376–2404 (2015)

    Article  Google Scholar 

  10. Kumakura, S.; Shirao, Y.; Kubota, K.; Komaba, S.: Preparation and electrochemical properties of \(\text{ Li }_{2}\text{ MoO }_{3}/\text{ C } \) composites for rechargeable Li-ion batteries. Phys. Chem. Chem. Phys. 18(41), 28556–28563 (2016)

    Article  Google Scholar 

  11. Lee, J.; Urban, A.; Li, X.; Su, D.; Hautier, G.; Ceder, G.: Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343(6170), 519–522 (2014)

    Article  Google Scholar 

  12. Ma, J.; Zhou, Y.-N.; Gao, Y.; Yu, X.; Kong, Q.; Gu, L.; Wang, Z.; Yang, X.-Q.; Chen, L.: Feasibility of using \(\text{ Li }_{2}\text{ MoO }_{3}\) in constructing Li-rich high energy density cathode materials. Chem. Mater. 26(10), 3256–3262 (2014)

    Article  Google Scholar 

  13. James, A.C.W.P.; Goodenough, J.B.: Structure and bonding in \(\text{ Li }_{2}\text{ MoO }_{3}\) and \(\text{ Li }_{2-x}\text{ MoO }_{3}\, (0 \le \text{ x } \le 1.7)\). J. Solid State Chem. 76(1), 87–96 (1988)

    Article  Google Scholar 

  14. Kobayashi, H.; Tabuchi, M.; Shikano, M.; Yasuo, N.; Kageyama, H.; Ishida, T.; Nakamura, H.; Kurioka, Y.; Kanno, R.: Synthesis and electrochemical properties of lithium molybdenum oxides. J. Power Sour. 81–82, 524–529 (1999)

    Article  Google Scholar 

  15. Li, D.; He, H.; Wu, X.; Li, M.: Electrochemical behavior of submicron \(\text{ Li }_{2}\text{ MoO }_{3}\) as anodes in lithium-ion batteries. J. Alloys Compd. 682, 759–765 (2016)

    Article  Google Scholar 

  16. Park, K.S.; Im, D.; Benayad, A.; Dylla, A.; Stevenson, K.J.; Goodenough, J.B.: \(\text{ LiFeO }_{2}\)-incorporated \(\text{ Li }_{2}\text{ MoO }_{3}\) as a cathode additive for lithium-ion battery safety. Chem. Mater. 24(14), 2673–2683 (2012)

    Article  Google Scholar 

  17. Hoshino, S.; Glushenkov, A.M.; Ichikawa, S.; Ozaki, T.; Inamasu, T.; Yabuuchi, N.: Reversible three-electron redox reaction of \(\text{ Mo }^{3+}/\text{ Mo }^{6+}\) for rechargeable lithium batteries. ACS Energy Lett. 2(4), 733–738 (2017)

    Article  Google Scholar 

  18. Li, Q.; Li, G.; Fu, C.; Luo, D.; Fan, J.; Li, L.: \(\text{ K }^{+}\)-doped \(\text{ Li }_{1.2}\text{ Mn }_{0.54}\text{ Co }_{0.13}\text{ Ni }_{0.13}\text{ O }_{2}\): a novel cathode material with an enhanced cycling stability for lithium-ion batteries. ACS Appl. Mater. Interfaces 6(13), 10330–10341 (2014)

    Article  Google Scholar 

  19. Qing, R.-P.; Shi, J.-L.; Xiao, D.-D.; Zhang, X.-D.; Yin, Y.-X.; Zhai, Y.-B.; Gu, L.; Guo, Y.-G.: Enhancing the kinetics of Li-rich cathode materials through the pinning effects of gradient surface \(\text{ Na }^{+}\) doping. Adv. Energy Mater. 6(6), 1501914 (2016)

    Article  Google Scholar 

  20. Lu, C.; Yang, S.; Wu, H.; Zhang, Y.; Yang, X.; Liang, T.: Enhanced electrochemical performance of Li-rich \(\text{ Li }_{1.2}\text{ Mn }_{0.52}\text{ Co }_{0.08}\text{ Ni }_{0.2}\text{ O }_{2}\) cathode materials for Li-ion batteries by vanadium doping. Electrochim. Acta 209, 448–455 (2016)

    Article  Google Scholar 

  21. Dong, Y.; Xu, X.; Li, S.; Han, C.; Zhao, K.; Zhang, L.; Niu, C.; Huang, Z.; Mai, L.: Inhibiting effect of \(\text{ Na }^{+}\) pre-intercalation in \(\text{ MoO }_{3}\) nanobelts with enhanced electrochemical performance. Nano Energy 15, 145–152 (2015)

    Article  Google Scholar 

  22. Hu, Z.; Zhou, C.; Prabhakar, R.R.; Lim, S.X.; Wang, Y.; Kan, JAv; Cheng, H.; Mhaisalkar, S.G.; Sow, C.-H.: Rapid reversible electromigration of intercalated K ions within individual \(\text{ MoO }_{3}\) nanobundle. J. Appl. Phys. 113(2), 24311 (2013)

  23. Zhou, L.; Yang, L.; Yuan, P.; Zou, J.; Wu, Y.; Yu, C.: \(\upalpha \text{-MoO }_{3 }\) nanobelts: a high performance cathode material for lithium ion batteries. J. Phys. Chem. C 114(49), 21868–21872 (2010)

    Article  Google Scholar 

  24. Ma, J.; Gao, Y.; Wang, Z.; Chen, L.: Structural and electrochemical stability of Li-rich layer structured \(\text{ Li }_{2}\text{ MoO }_{3}\) in air. J. Power Sour. 258, 314–320 (2014)

    Article  Google Scholar 

  25. Zhou, Y.-N.; Ma, J.; Hu, E.; Yu, X.; Gu, L.; Nam, K.-W.; Chen, L.; Wang, Z.; Yang, X.-Q.: Tuning charge-discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries. Nat Commun. 5, 5381 (2014)

    Article  Google Scholar 

  26. Toby, B.H.: EXPGUI, a graphical user interface for GSAS. J. Appl. Cryst. 34(2), 210–213 (2001)

    Article  Google Scholar 

  27. Wei, Q.; Jiang, Z.; Tan, S.; Li, Q.; Huang, L.; Yan, M.; Zhou, L.; An, Q.; Mai, L.: Lattice breathing inhibited layered vanadium oxide ultrathin nanobelts for enhanced sodium storage. ACS Appl. Mater. Interfaces 7(33), 18211–18217 (2015)

    Article  Google Scholar 

  28. Li, X.; Liu, C.; Zhang, C.; Fu, H.; Nan, X.; Ma, W.; Li, Z.; Wang, K.; Wu, H.; Cao, G.: Effects of preinserted Na ions on Li-ion electrochemical intercalation properties of \(\text{ V }_{2}\text{ O }_{5}\). ACS Appl. Mater. Interfaces 8(37), 24629–24637 (2016)

    Article  Google Scholar 

  29. Peng, C.; Xiao, F.; Yang, J.; Li, Z.; Lei, G.; Xiao, Q.; Ding, Y.; Hu, Z.: Carbon-encapsulated Mn-doped \(\text{ V }_{2}\text{ O }_{5}\) nanorods with long span life for high-power rechargeable lithium batteries. Electrochim. Acta 192, 216–226 (2016)

    Article  Google Scholar 

  30. Zhang, H.; Li, Z.; Yu, S.; Xiao, Q.; Lei, G.; Ding, Y.: Carbon-encapsulated \(\text{ LiMn }_{2}\text{ O }_{4}\) spheres prepared using a polymer microgel reactor for high-power lithium-ion batteries. J. Power Sour. 301, 376–385 (2016)

    Article  Google Scholar 

  31. Qu, Q.; Zhu, Y.; Gao, X.; Wu, Y.: Core-shell structure of polypyrrole grown on V\(_{2}\text{ O }_{5 }\)nanoribbon as high performance anode material for supercapacitors. Adv. Energy Mater. 2, 950–955 (2012)

    Article  Google Scholar 

  32. Tang, W.; Gao, X.; Zhu, Y.; Yue, Y.; Shi, Y.; Wu, Y.; Zhu, K.: A hybrid of \(\text{ V }_{2}\text{ O }_{5}\) nanowires and MWCNTs coated with polypyrrole as an anode material for aqueous rechargeable lithium batteries with excellent cycling performance. J. Mater. Chem. 22, 20143–20145 (2012)

    Article  Google Scholar 

  33. Tang, W.; Liu, L.; Zhu, Y.; Sun, H.; Wu, Y.; Zhu, K.: An aqueous rechargeable lithium battery of excellent rate capability based on a nanocomposite of \(\text{ MoO }_{3}\) coated with PPy and \(\text{ LiMn }_{2}\text{ O }_{4}\). Energy Environ. Sci. 5(5), 6909–6913 (2012)

    Article  Google Scholar 

  34. Liu, Y.; Zhang, B.; Yang, Y.; Chang, Z.; Wen, Z.; Wu, Y.: Polypyrrole-coated \(\upalpha \text{-MoO }_{3 }\)nanobelts with good electrochemical performance as anode materials for aqueous supercapacitors. J. Mater. Chem. A 1(43), 13582–13587 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the financial support from the Scientific Research Foundation of Hunan Provincial Education Department (No. 17A205), National Natural Science Foundation of China (No. 21376069, 21576075) and Hunan Natural Science Foundation (2015JJ3115). Mr. Jicheng Li is also appreciated for his refinement of the lattice parameters using the GSAS program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaohui Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S., Peng, C., Li, Z. et al. K-Doped Li-Rich Molybdenum-Based Oxide with Improved Electrochemical Properties for Lithium-Ion Batteries. Arab J Sci Eng 42, 4291–4298 (2017). https://doi.org/10.1007/s13369-017-2719-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2719-4

Keywords

Navigation