Skip to main content
Log in

Effect of Multiwall Carbon Nanotubes on the Ablative Properties of Carbon Fiber-Reinforced Epoxy Matrix Composites

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The effect of multiwall carbon nanotubes (MWCNTs) on the thermal and ablative properties of carbon fiber epoxy matrix composites was investigated. Thermochemical and oxidation reactions were found to dominate the ablation mechanism. Shear forces and high temperatures were produced using oxy-acetylene torch. Three types of composites were investigated: (a) carbon fiber epoxy matrix composites, (b) carbon fiber epoxy matrix composite containing 0.2wt% MWCNTs and (c) carbon fiber epoxy matrix composite containing 0.4wt% MWCNTs. Composites containing 0.2wt% MWCNTs showed 5.4% increase in erosion resistance, while composites containing 0.4wt% MWCNTs showed 9.6% increase in erosion resistance compared with carbon fiber epoxy matrix composites. Thermal conductivity increased with the addition of MWCNTs, i.e., 15 and 52% in composites containing 0.2 and 0.4wt% MWCNTs, respectively. Due to the addition of MWCNTs, the increased thermal conductivity of MWCNT-loaded epoxy matrix affected the ablation behavior of carbon fibers and resulted in gradual thinning of carbon fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. d’Alelio G.F., Parker J.A.: Ablative Plastics: Papers. M. Dekker, New York (1971)

    Google Scholar 

  2. Schmidt D.L.: Ablative polymers in aerospace technology. J. Macromol. Sci. Chem. 3(3), 327–365 (1969)

    Article  Google Scholar 

  3. Miller, G.H.; Robinson, G.C. Jr.: Investigation of fiber systems of ablative materials. NASA CR-54722 TEI-TP. 25 (1965)

  4. Nie S., Song L., Guo Y., Wu K., Xing W., Lu H. et al.: Intumescent flame retardation of starch containing polypropylene semibiocomposites: flame retardancy and thermal degradation. Ind. Eng. Chem. Res. 48(24), 10751–10758 (2009)

    Article  Google Scholar 

  5. Ratna D.: Epoxy composites: impact resistance and flame retardancy. iSmithers Rapra Publishing, Shewsbury (2007)

    Google Scholar 

  6. Ran H., Cui H., Hao Z., Li R., Zhou S., Zhang Y. et al.: The fracture toughness of several rocket nozzle throat materials. New Carbon Mater. 17(1), 30–35 (2002)

    Google Scholar 

  7. Natali M., Rallini M., Puglia D., Kenny J., Torre L.: EPDM based heat shielding materials for Solid Rocket Motors: A comparative study of different fibrous reinforcements. Polym. Degrad. Stab. 98(11), 2131–2139 (2013)

    Article  Google Scholar 

  8. Patton R., Pittman C. Jr, Wang L., Hill J., Day A.: Ablation mechanical and thermal conductivity properties of vapor grown carbon fiber/phenolic matrix composites. Compos. Part A Appl. Sci. Manuf. 33(2), 243–251 (2002)

    Article  Google Scholar 

  9. Cho D., Il Yoon B.: Microstructural interpretation of the effect of various matrices on the ablation properties of carbon-fiber-reinforced composites. Compos. Sci. Technol. 61(2), 271–280 (2001)

    Article  Google Scholar 

  10. Edison T.A.: Electric lamp. Google Patents, (1880)

  11. Bacon R., Moses C.T.: Carbon Fibers, from Light Bulbs to Outer Space. High Performance Polymers: Their Origin and Development, pp. 341–353. Springer, New York (1986)

    Book  Google Scholar 

  12. Li Z., Wang J., Tong Y., Xiao S., Xu L.: Microstructural evolution during oxidative ablation in air for polyacrylonitrile based carbon fibers with different graphite degrees. Surf. Interface Anal. 45(4), 787–792 (2013)

    Article  Google Scholar 

  13. Lee S.M.: International Encyclopedia of Composites. VCH, New York (1991)

    Google Scholar 

  14. Vaia R.A., Price G., Ruth P.N., Nguyen H.T., Lichtenhan J.: Polymer/layered silicate nanocomposites as high performance ablative materials. Appl. Clay Sci. 15(1), 67–92 (1999)

    Article  Google Scholar 

  15. Natali M., Monti M., Puglia D., Kenny J.M., Torre L.: Ablative properties of carbon black and MWNT/phenolic composites: a comparative study. Compos. Part A Appl. Sci. Manuf. 43(1), 174–182 (2012)

    Article  Google Scholar 

  16. Ahmad M.S., Farooq U., Subhani T.: Post-ablation micro-structural analysis of nanoparticle reinforced carbon fiber epoxy matrix composites. J. Space Technol. 4(1), 101–107 (2014)

    Google Scholar 

  17. Li. J., Sham M.L., Kim J.-K., Marom G.: Morphology and properties of UV/ozone treated graphite nanoplatelet/epoxy nanocomposites. Compos. Sci. Technol. 67(2), 296–305 (2007)

    Article  Google Scholar 

  18. Kiera A.F., Schmidt-Lehr S., Song M., Bings N.H., Broekaert J.A.C.: Direct multielement trace analyses of silicon carbide powders by spark ablation simultaneous inductively coupled plasma optical emission spectrometry. Spectrochim. Acta Part B At. Spectrosc. 63(2), 287–292 (2008)

    Article  Google Scholar 

  19. Duc D.H., Naoki I., Kazuyoshi F.: A study of near-infrared nanosecond laser ablation of silicon carbide. Int. J. Heat Mass Transf. 65(0), 713–718 (2013)

    Article  Google Scholar 

  20. Corral E.L., Walker L.S.: Improved ablation resistance of C–C composites using zirconium diboride and boron carbide. J. Eur. Ceram. Soc. 30(11), 2357–2364 (2010)

    Article  Google Scholar 

  21. Standard, A.: D5930-09, Standard test method for thermal conductivity of plastics by means of a transient line source technique ‘ASTM International. West Conshohocken, PA (2009)

  22. Standard, A.: E285-80, Standard test method for oxyacetylene ablation testing of thermal insulation materials (1996)

  23. Meng L., Fu C., Lu Q.: Advanced technology for functionalization of carbon nanotubes. Prog. Nat. Sci. 19(7), 801–810 (2009)

    Article  Google Scholar 

  24. Katzman H., Adams P., Le T., Hemminger C.: Characterization of low thermal conductivity PAN-based carbon fibers. Carbon 32(3), 379–391 (1994)

    Article  Google Scholar 

  25. Wen D., Ding Y.: Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids). J. Thermophys. Heat Transf. 18(4), 481–485 (2004)

    Article  Google Scholar 

  26. Lee W.E.: Ceramic Microstructures: Property Control by Processing. Springer, New York (1994)

    Google Scholar 

  27. Subhani, T.: Silica and borosilicate glass matrix composites containing carbon nanotubes [Thesis]. London: Imperial College London (2012)

  28. Gojny F.H., Wichmann M.H., Fiedler B., Kinloch I.A., Bauhofer W., Windle A.H. et al.: Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 47(6), 2036–2045 (2006)

    Article  Google Scholar 

  29. Rose N., Le Bras M., Bourbigot S., Delobel R.: Thermal oxidative degradation of epoxy resins: evaluation of their heat resistance using invariant kinetic parameters. Polym. Degrad. Stab. 45(3), 387–397 (1994)

    Article  Google Scholar 

  30. Hsieh Y.-C., Chou Y.-C., Lin C.-P., Hsieh T.-F., Shu C.-M.: Thermal analysis of multi-walled carbon nanotubes by Kissinger’s corrected kinetic equation. Aerosol Air Qual. Res. 10, 212–218 (2010)

    Google Scholar 

  31. Zhao L., Jang B.: The oxidation behaviour of low-temperature heat-treated carbon fibres. J. Mater. Sci. 32(11), 2811–2819 (1997)

    Article  Google Scholar 

  32. Yin J., Zhang H., Xiong X., Zuo J.: Ablation morphologies of different types of carbon in carbon/carbon composites. Carbon Sci. Technol. 1, 139–143 (2013)

    Google Scholar 

  33. Miyagawa H., Drzal L.T.: Thermo-physical and impact properties of epoxy nanocomposites reinforced by single-wall carbon nanotubes. Polymer 45(15), 5163–5170 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Shakeel Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, M.S., Farooq, U. & Subhani, T. Effect of Multiwall Carbon Nanotubes on the Ablative Properties of Carbon Fiber-Reinforced Epoxy Matrix Composites. Arab J Sci Eng 40, 1529–1538 (2015). https://doi.org/10.1007/s13369-015-1634-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1634-9

Keywords

Navigation