Skip to main content

Advertisement

Log in

STATCOM-Supercapacitor Control for Low Voltage Performance Improvement of Wind Generation Systems

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Improvement of dynamic performance of wind generator systems following severe low voltage condition has been addressed in this article. Dynamic models of cage-generator wind system connected to an infinite bus as well as to a multimachine AC system have been developed. A method of integrating the voltage–current dynamics of the asynchronous and synchronous generators in the multimachine system has been proposed. Decoupled real and reactive power control of supercapacitor energy storage device interfaced through a STATCOM has been implemented. The supercapacitor compensates any unbalance in real power during a disturbed condition, while the STATCOM caters for the reactive needs. Dynamic behavior of the wind generator has been simulated under very low voltage conditions for both the single machine and multimachine system configurations. The studies demonstrate that the supercapacitor STATCOM energy storage system can provide significant low voltage withstand capability for reasonable durations. The electromechanical transients are also effectively suppressed and normal conditions restored quickly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

dq :

Direct and quadrature axes of generator

R s, R r :

Stator, rotor resistance of induction generator

x s, x r :

Stator, rotor reactance

x m :

Mutual reactance

x :

Transient reactance

\({\psi_{{\rm ds}}, \psi_{{\rm qs}}}\) :

d, q axes stator flux linkage

\({\psi_{{\rm dr}}, \psi_{{\rm qr}}}\) :

d, q axes rotor flux linkage

i ds, i qs :

d, q axes stator current

i dr, i qr :

d, q axes rotor current

v ds, v qs :

d, q axes stator voltage

w e, w o :

Supply and base angular frequency

w t, w r :

Angular speed of turbine and generator rotor

V s, V b :

Generator terminal voltage, bus voltage

P m, P e :

Input and output power

H g, H t :

Inertia constant of generator and turbine

K s, θsh :

Shaft stiffness constant, shaft twist angle

D t, D g :

Damping constant turbine, generator

\({{m}, {\psi}}\) :

Modulation index and phase angle of STATCOM

V st, I st :

STATCOM voltage and injected current

R st, L st :

Resistance and inductance of STATCOM circuit

V dc, C dc :

DC link voltage and capacitance of STATCOM

V sc, I sc :

Supercapacitor voltage and current

L sc, C sc :

Supercapacitor circuit inductance and capacitance

P st, Q st :

Real and reactive power injected by STATCOM

\({e_{d}^{\prime},e_{q}^{\prime}}\) :

dq axes internal voltages

\({T_{{\rm do}}^{\prime},T_{{\rm qo}}^{\prime}}\) :

Open circuit time constants of synchronous generator

K A, T A :

Exciter gain and time constant

References

  1. Rathi, M.R.; Mohan, N.: A novel robust low voltage and fault ride through for wind turbine application operating in weak grids. In: Proceedings of 31st Annual Conference IEEE Industrial Electronics Society, IECON, pp. 2481–2486 (2005)

  2. Salman S.K., Teo A.L.J.: Windmill modeling consideration and factors influencing the stability of a grid-connected wind power based embedded generator. IEEE Trans. Power Syst. 18, 793–802 (2003)

    Article  Google Scholar 

  3. Erlich, I.; Bachmann, U.: Grid code requirements concerning connection and operation of wind turbines in Germany. In: Proceedings of IEEE Power Engineering Society General Meeting, pp. 2230–2234 (2005)

  4. El-Helw H.M., Tennakoon S.B.: Evaluation of the suitability of a fixed speed wind turbine for large scale wind farms considering the new UK grid code. Renew. Energy 33, 1–12 (2008)

    Article  Google Scholar 

  5. Rahmann C., Haubrich H.J., Moser A., Palma-Behnke R., Vargas L., Salles M.B.C.: Justified Fault-Ride-Through requirements for wind turbines in power systems. IEEE Trans. Power Syst. 99, 1555–1563 (2011)

    Article  Google Scholar 

  6. Sumper A., Gomis-Bellmunt O., Sudria-Andreu A., Villafafila-Robles R., Rull-Duran J.: Response of fixed speed wind turbines to system frequency disturbances. IEEE Trans. Power Syst. 24, 181–192 (2009)

    Article  Google Scholar 

  7. DeAlegría, I.M.; Andreu, J.; Martín, J.L.; Ibañez, P.; Villate, J.L.; Camblong, H.: Connection requirements for wind farms: A survey on technical requirements and regulation. Renew. Sustain. Energy 11, 1858–1872 (2007)

  8. Bary, D.: Increasing renewable accessibility in Ireland. In: Proceedings of the 9th World Energy Congress, pp. 1–10 (2004)

  9. Hossain M.J., Pota H.R., Ugrinovskii V.A., Ramos R.A.: Simultaneous STATCOM and pitch angle control for improved LVRT capability of fixed-speed wind turbines. IEEE Trans. Sustain. Energy 1, 142–151 (2010)

    Article  Google Scholar 

  10. Chompoo-Inwai C., Yingvivatanapong C., Methaprayoon K., Wei-Jen L.: Reactive compensation techniques to improve the ride-through capability of wind turbine during disturbance. IEEE Trans. Ind. Appl. 41(3), 666–672 (2005)

    Article  Google Scholar 

  11. Maibach, P.; Wernli, J.; Obad, P.M.: STATCOM technology for wind parks to meet grid code requirements. In: Proceedings of EWEC (2007)

  12. Molinas M., Suul J.A., Undeland T.: Low voltage ride through of wind farms with cage generators: STATCOM versus SVC. IEEE Trans. Power Electron. 23, 1104–1117 (2008)

    Article  Google Scholar 

  13. Wu X.G., Arulampalam A., Zhan C., Jenkins N.: Application of a static reactive power compensator (STATCOM) and a dynamic braking resistor (DBR) for the stability enhancement of a large wind farm. Wind Eng. J. 27(2), 93–106 (2003)

    Article  Google Scholar 

  14. Muyeen S.M., Takahashi R., Murata T., Tamura J., Ali M.H.: Application of STATCOM/BESS for wind power smoothening and hydrogen generation. Electr. Power Syst. Res. 79, 365–373 (2009)

    Article  Google Scholar 

  15. Muyeen S.M., Takahashi R., Ali M.H., Murata T., Tamura J.: Transient stability augmentation of power system including wind farms by using ECS. IEEE Trans. Power Syst. 23(3), 1179–1187 (2008)

    Article  Google Scholar 

  16. Alam, M.A.; Rahim, A.H.M.A.; Abido, M.A.: Supercapacitor based energy storage system for effective fault ride through of wind generation system. In: IEEE International Symposium on Industrial Electronics (ISIE), Bari, Italy (2010)

  17. Gaztanaga H., Etxeberria-Otadui I., Ocnasu D., Bacha S.: Real time analysis of the transient response improvement of fixed-speed wind farms by using a reduced-scale STATCOM prototype. IEEE Trans. Power Syst. 22, 658–666 (2007)

    Article  Google Scholar 

  18. Jayashri R., Devi R.P.K.: Effect of tuned unified power flow controller to mitigate the rotor speed instability of fixed-speed wind turbines. Renew. Energy 34, 591–596 (2009)

    Article  Google Scholar 

  19. Heier S.: Grid Integration of Wind Energy Conversion Systems. Wiley, New York (2007)

    Google Scholar 

  20. Rahim A.H.M.A., Ahsanul Alam M., Kandlawala M.F.: Dynamic performance improvement of an isolated wind turbine induction generator. J. Comput. Electr. Eng. 35(4), 594–607 (2009)

    Article  Google Scholar 

  21. Sauer P.W., Pai M.A.: Power System Dynamics and Stability. Prentice Hall, NJ (1998)

    Google Scholar 

  22. Nomikos B.M., Vournas C.D.: Investigation of induction machine contribution to power system oscillations. IEEE Trans. Power Syst. 20(2), 916–925 (2005)

    Article  Google Scholar 

  23. Camara M.B., Gualous H., Gustin F., Berthon A.: Design and new control of DC/DC Converters to share energy between supercapacitors and batteries in hybrid vehicles. IEEE Trans. Veh. Tech. 57, 2721–2735 (2008)

    Article  Google Scholar 

  24. Yang Z., Shen C., Zhang L., Crow M.L., Atcitty S.: Integration of a StatCom and battery energy storage. IEEE Trans. Power Syst. 16, 254–260 (2001)

    Article  Google Scholar 

  25. Shafiu M., Anaya-Lara O., Bathurst G., Jenkins N.: Aggregated wind turbine models for power system dynamic studies. Wind Eng. 30(3), 171–186 (2006)

    Article  Google Scholar 

  26. Feijoo E., Cidras J.: Modeling of wind farms in the load flow analysis. IEEE Trans. Power Syst. 15(1), 110–115 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. M. A. Rahim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahim, A.H.M.A., Alam, M.A. STATCOM-Supercapacitor Control for Low Voltage Performance Improvement of Wind Generation Systems. Arab J Sci Eng 38, 3133–3143 (2013). https://doi.org/10.1007/s13369-012-0471-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-012-0471-3

Keywords

Navigation