Skip to main content
Log in

Abstract

Gulliksen, following Bass’s observations, extended the notion of length to an ordinal-valued invariant defined on the class of finitely generated modules over a Noetherian ring. We show how to calculate this combinatorial invariant by means of the fundamental cycle of the module, thus linking the lattice of submodules to homological properties of the module. Using this, we equip each module with its canonical topology. From ordinal length, other ordinal-valued invariants can be derived, such as filtration rank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Although very plausible, I do not know whether the valence of the filtration rank is equal to \(l^{\text {pr}}(M)\).

  2. See, for instance, (Eisenbud (1995), p. 102); not to be confused with the multiplicity of a module at a primary ideal given in terms of its Hilbert function.

  3. Our terminology differs slightly from the literature, where, at least for local rings, the condition is formulated over the completion.

  4. This is Eisenbud’s nomenclature in (Eisenbud (1995), p. 93), whereas Dress (in the original paper Dress 1993) would require in addition that all primes in \(\mathcal P\) are non-embedded. Since everything is determined by the nature of \(\mathrm{Ass }(M)\), there seems to be no need in distinguishing between the two.

  5. The adverb ‘pretty’ can mean either ‘fairly’ or ‘very’, and it is the latter usage (i.e., more than clean) that is intended here, whereas in informal speech ‘pretty clean’ would rather mean the former (i.e., less than clean).

  6. I am grateful to S. Arslan for providing me the semi-group data.

  7. Here ‘ci’ stands for ‘complete intersection’, although this terms is usually only reserved for ideals of this type in regular rings.

  8. As alluded to above, the counterintuitive notation normally adopted for the resulting ordinal is \({\mathrm{\mathtt {b} }}{\mathrm{\mathtt {a} }}\).

References

  • Aschenbrenner, M., Pong, W.Y.: Orderings of monomial ideals. Fund. Math. 181(1), 27–74 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Atiyah, M., Macdonald, G.: Introduction to Commutative Algebra. Addison-Wesley Publishing Co., Reading (1969)

  • Bass, H.: Descending chains and the Krull ordinal of commutative Noetherian rings. J. Pure Appl. Algebra 1(4), 347–360 (1971)

  • Bayer, D., Mumford, D.: What can be computed in algebraic geometry? Computational algebraic geometry and commutative algebra. Cortona: Symposium on Mathematics. XXXIV, vol. 1993, pp. 1–48. Cambridge University Press, Cambridge (1991)

  • Brookfield, G.: A Krull–Schmidt theorem for Noetherian modules. J. Algebra 251(1), 70–79 (2002) (MR 1900275 (2003b:16005))

  • Brookfield, G.: The length of Noetherian modules. Commun. Algebra 30(7), 3177–3204 (2002) (MR 1914992 (2003f:16002))

  • Bruns, W., Herzog, J.: Cohen–Macaulay Rings. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  • Chan, C.-Y.: Filtrations of modules, the Chow group, and the Grothendieck group. J. Algebra 219(1), 330–344 (1999)

  • Dress, A.: A new algebraic criterion for shellability. Beiträge Algebra Geom. 34(1), 45–55 (1993)

    MathSciNet  MATH  Google Scholar 

  • Eisenbud, D.: Commutative algebra with a view toward algebraic geometry. In: Graduate Texts in Mathematics, vol. 150. Springer-Verlag, New York (1995)

  • Gabriel, P.: Des catégories abéliennes. Bull. Soc. Math. France 90, 323–448 (1962)

    MathSciNet  MATH  Google Scholar 

  • Gabriel, P., Rentschler, R.: Sur la dimension des anneaux et ensembles ordonnés. C. R. Acad. Sci. Paris 265, A712–A715 (1967)

  • Garavaglia, S.: Decomposition of totally transcendental modules. J. Symb. Logic 45(1), 155–164 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  • Gordon, R., Robson, J.C.: Krull Dimension. American Mathematical Society, Providence, RI (1973) (Memoirs of the American Mathematical Society, No. 133, MR 0352177 (50 #4664))

  • Gulliksen, T.: A theory of length for Noetherian modules. J. Pure Appl. Algebra 3, 159–170 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  • Hartshorne, R.: Connectedness of the Hilbert scheme. Inst. Hautes Études Sci. Publ. Math. 29, 5–48 (1966)

    MathSciNet  MATH  Google Scholar 

  • Hartshorne, R.: Algebraic Geometry. Springer-Verlag, New York (1977)

    Book  MATH  Google Scholar 

  • Herzog, J., Popescu, D.: Finite filtrations of modules and shellable multicomplexes. Manuscr. Math. 121(3), 385–410 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Higman, G.: On a conjecture of Nagata. Proc. Camb. Philos. Soc. 52, 1–4 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  • Jategaonkar, A.V.: Jacobson’s conjecture and modules over fully bounded Noetherian rings. J. Algebra 30, 103–121 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  • Knuth, D.E.: Surreal Numbers. Addison-Wesley Publishing Co., Reading (1974)

  • Kondratieva, M.V., Levin, A.B., Mikhalev, A.V., Pankratiev, E.V.: Differential and difference dimension polynomials. In: Mathematics and Its Applications, vol. 461. Kluwer Academic Publishers, Dordrecht (1999) (MR 1676955 (2001c:12006))

  • Krause, G.: On fully left bounded left Noetherian rings. J. Algebra 23, 88–99 (1972)

  • Krause, G.: Descending chains of submodules and the Krull-dimension of Noetherian modules. J. Pure Appl. Algebra 3, 385–397 (1973) (MR 0338071 (49 #2838))

  • Matsumura, H.: Commutative Ring Theory. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  • McConnell, J.C., Robson, J.C.: Noncommutative Noetherian rings, revised edn. In: Graduate Studies in Mathematics, vol. 30. American Mathematical Society, Providence, RI (2001) (with the cooperation of L. W. Small)

  • Miyata, T.: Note on direct summands of modules. J. Math. Kyoto Univ. 7, 65–69 (1967)

    MathSciNet  MATH  Google Scholar 

  • Nagata, M.: On the nilpotency of nil-algebras. J. Math. Soc. Jpn. 4, 296–301 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  • Năstăsescu, C., Van Oystaeyen, F.: Mathematics and Its Applications. Dimensions of ring theory, vol. 36. D. Reidel Publishing Co., Dordrecht (1987)

    Google Scholar 

  • Sabbagh, G., Eklof, P.: Definability problems for modules and rings. J. Symb. Logic 36, 623–649 (1971) (MR 0313050 (47 #1605))

  • Schenzel, P.: On the dimension filtration and Cohen–Macaulay filtered modules, commutative algebra and algebraic geometry (Ferrara). In: Lecture Notes in Pure and Applied Mathematics, vol. 206, pp. 245–264. Dekker, New York (1999)

  • Schoutens, H.: The use of ultraproducts in commutative algebra. In: Lecture Notes in Mathematics, vol. 1999. Springer-Verlag, New York (2010)

  • Schoutens, H.: Absolute bounds on the number of generators of Cohen–Macaulay ideals of height at most two. Bull. Soc. Math. Belg. 13, 719–732 (2006)

    MathSciNet  MATH  Google Scholar 

  • Schoutens, H.: Binary Modules and Their Endomorphisms. arXiv:1212.2171 (2012a)

  • Schoutens, H.: Condense Modules and the Goldie Dimension (2012b, preprint)

  • Simmons, H.: The Gabriel dimension and Cantor–Bendixson rank of a ring. Bull. Lond. Math. Soc. 20(1), 16–22 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Striuli, J.: On extensions of modules. J. Algebra 285(1), 383–398 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Sturmfels, B., Trung, N.V., Vogel, W.: Bounds on degrees of projective schemes. Math. Ann. 302(3), 417–432 (1995)

  • Vasconcelos, W.: On finitely generated flat modules. Trans. Am. Math. Soc. 138, 505–512 (1969)

  • Vasconcelos, W.: The homological degree of a module. Trans. Am. Math. Soc. 350, 1167–1179 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Schoutens.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schoutens, H. The theory of ordinal length. Beitr Algebra Geom 57, 67–118 (2016). https://doi.org/10.1007/s13366-014-0229-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13366-014-0229-z

Keywords

Mathematics Subject Classification

Navigation