Skip to main content

Advertisement

Log in

Neurological sequelae induced by alphavirus infection of the CNS are attenuated by treatment with the glutamine antagonist 6-diazo-5-oxo-l-norleucine

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Recovery from encephalomyelitis induced by infection with mosquito-borne alphaviruses is associated with a high risk of lifelong debilitating neurological deficits. Infection of mice with the prototypic alphavirus, Sindbis virus, provides an animal model with which to study disease mechanisms and examine potential therapeutics. Infectious virus is cleared from the brain within a week after infection, but viral RNA is cleared slowly and persists for the life of the animal. However, no studies have examined the effect of infection on neurocognitive function over time. In the present study, we examined neurocognitive function at different phases of infection in 5-week-old C57BL/6 mice intranasally inoculated with Sindbis virus. At the peak of active virus infection, mice demonstrated hyperactivity, decreased anxiety, and marked hippocampal-dependent memory deficits, the latter of which persisted beyond clearance of infectious virus and resolution of clinical signs of disease. Previous studies indicate that neuronal damage during alphavirus encephalomyelitis is primarily due to inflammatory cell infiltration and glutamate excitotoxicity rather than directly by virus infection. Therefore, mice were treated with 6-diazo-5-oxo-l-norleucine (DON), a glutamine antagonist that can suppress both the immune response and excitotoxicity. Treatment with DON decreased inflammatory cell infiltration and cell death in the hippocampus and partially prevented development of clinical signs and neurocognitive impairment despite the presence of infectious virus and high viral RNA levels. This study presents the first report of neurocognitive sequelae in mice with alphavirus encephalomyelitis and provides a model system for further elucidation of the pathogenesis of virus infection and assessment of potential therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adhikari A (2014) Distributed circuits underlying anxiety. Front Behav Neurosci 8:112. doi:10.3389/fnbeh.2014.00112

    Article  PubMed Central  PubMed  Google Scholar 

  • Amaral DC, Rachid MA, Vilela MC, Campos RD, Ferreira GP, Rodrigues DH, Lacerda-Queiroz N, Miranda AS, Costa VV, Campos MA, Kroon EG, Teixeira MM, Teixeira AL (2011) Intracerebral infection with dengue-3 virus induces meningoencephalitis and behavioral changes that precede lethality in mice. J Neuroinflammation 8:23. doi:10.1186/1742-2094-8-23

    Article  PubMed Central  PubMed  Google Scholar 

  • Binder GK, Griffin DE (2001) Interferon-γ-mediated site-specific clearance of alphavirus from CNS neurons. Science 293:303–306. doi:10.1126/science.1059742

    Article  CAS  PubMed  Google Scholar 

  • Bruyn HB, Lennette EH (1953) Western equine encephalitis in infants; a report on three cases with sequelae. Calif Med 79:362–366

    PubMed Central  CAS  PubMed  Google Scholar 

  • Colombo SL, Palacios-Callender M, Frakich N, De Leon J, Schmitt CA, Boorn L, Davis N, Moncada S (2010) Anaphase-promoting complex/cyclosome-Cdh1 coordinates glycolysis and glutaminolysis with transition to S phase in human T lymphocytes. Proc Natl Acad Sci U S A 107:18868–18873. doi:10.1073/pnas.1012362107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crawley JN (2007) What’s wrong with my mouse? : behavioral phenotyping of transgenic and knockout mice, 2nd edn. Wiley-Interscience, Hoboken

    Book  Google Scholar 

  • Earhart RH, Koeller JM, Davis HL (1982) Phase I trial of 6-diazo-5-oxo-L-norleucine (DON) administered by 5-day courses. Cancer Treat Rep 66:1215–1217

    CAS  PubMed  Google Scholar 

  • Earhart RH, Amato DJ, Chang AY, Borden EC, Shiraki M, Dowd ME, Comis RL, Davis TE, Smith TJ (1990) Phase II trial of 6-diazo-5-oxo-L-norleucine versus aclacinomycin-A in advanced sarcomas and mesotheliomas. Invest New Drugs 8:113–119

    Article  CAS  PubMed  Google Scholar 

  • Earnest MP, Goolishian HA, Calverley JR, Hayes RO, Hill HR (1971) Neurologic, intellectual, and psychologic sequelae following western encephalitis. A follow-up study of 35 cases. Neurology 21:969–974

    Article  CAS  PubMed  Google Scholar 

  • Finley KH, Longshore WA Jr, Palmer RJ, Cook RE, Riggs N (1955) Western equine and St. Louis encephalitis; preliminary report of a clinical follow-up study in California. Neurology 5:223–235

    Article  CAS  PubMed  Google Scholar 

  • Fitting S, Ignatowska-Jankowska BM, Bull C, Skoff RP, Lichtman AH, Wise LE, Fox MA, Su J, Medina AE, Krahe TE, Knapp PE, Guido W, Hauser KF (2013) Synaptic dysfunction in the hippocampus accompanies learning and memory deficits in human immunodeficiency virus type-1 Tat transgenic mice. Biol Psychiatry 73:443–453. doi:10.1016/j.biopsych.2012.09.026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goeldner C, Reiss D, Wichmann J, Kieffer BL, Ouagazzal A-M (2009) Activation of nociceptin opioid peptide (NOP) receptor impairs contextual fear learning in mice through glutamatergic mechanisms. Neurobiol Learn Mem 91:393–401. doi:10.1016/j.nlm.2008.12.001

    Article  CAS  PubMed  Google Scholar 

  • Gould TJ, McCarthy MM, Keith RA (2002) MK-801 disrupts acquisition of contextual fear conditioning but enhances memory consolidation of cued fear conditioning. Behav Pharmacol 13:287–294

    Article  CAS  PubMed  Google Scholar 

  • Greene IP, Lee E-Y, Prow N, Ngwang B, Griffin D (2008) Protection from fatal viral encephalomyelitis: AMPA receptor antagonists have a direct effect on the inflammatory response to infection. Proc Natl Acad Sci U S A 105:3575–3580. doi:10.1073/pnas.0712390105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Griffin DE (2010) Emergence and re-emergence of viral diseases of the central nervous system. Prog Neurobiol 91:95–101. doi:10.1016/j.pneurobio.2009.12.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Griffin DE (2013) Alphaviruses. In: Knipe DM, Howley PM (eds) Fields virology, 6th edn. Lippincott Williams & Wilkins, Philadelphia, pp 652–686

    Google Scholar 

  • Gubler DJ (2002) The global emergence/resurgence of arboviral diseases as public health problems. Arch Med Res 33:330–342

    Article  PubMed  Google Scholar 

  • Havert MB, Schofield B, Griffin DE, Irani DN (2000) Activation of divergent neuronal cell death pathways in different target cell populations during neuroadapted sindbis virus infection of mice. J Virol 74:5352–5356. doi:10.1128/JVI. 74.11.5352-5356.2000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holt W, Maren S (1999) Muscimol inactivation of the dorsal hippocampus impairs contextual retrieval of fear memory. J Neurosci 19:9054–9062

    CAS  PubMed  Google Scholar 

  • Jackson AC, Moench TR, Griffin DE, Johnson RT (1987) The pathogenesis of spinal cord involvement in the encephalomyelitis of mice caused by neuroadapted Sindbis virus infection. Lab Invest 56:418–423

    CAS  PubMed  Google Scholar 

  • Jurgens HA, Amancherla K, Johnson RW (2012) Influenza infection induces neuroinflammation, alters hippocampal neuron morphology, and impairs cognition in adult mice. J Neurosci 32:3958–3968. doi:10.1523/JNEUROSCI. 6389-11.2012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim JJ, Jung MW (2006) Neural circuits and mechanisms involved in Pavlovian fear conditioning: a critical review. Neurosci Biobehav Rev 30:188–202. doi:10.1016/j.neubiorev.2005.06.005

    Article  PubMed Central  PubMed  Google Scholar 

  • Kimura T, Griffin DE (2003) Extensive immune-mediated hippocampal damage in mice surviving infection with neuroadapted Sindbis virus. Virology 311:28–39. doi:10.1016/S0042-6822(03)00110-7

    Article  CAS  PubMed  Google Scholar 

  • Kovach JS, Eagan RT, Powis G, Rubin J, Creagan ET, Moertel CG (1981) Phase I and pharmacokinetic studies of DON. Cancer Treat Rep 65:1031–1036

    CAS  PubMed  Google Scholar 

  • Lambrechts L, Scott TW, Gubler DJ (2010) Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl Trop Dis 4:e646. doi:10.1371/journal.pntd.0000646

    Article  PubMed Central  PubMed  Google Scholar 

  • Levine B, Griffin DE (1992) Persistence of viral RNA in mouse brains after recovery from acute alphavirus encephalitis. J Virol 66:6429–6435

    PubMed Central  CAS  PubMed  Google Scholar 

  • Levine B, Hardwick JM, Trapp BD, Crawford TO, Bollinger RC, Griffin DE (1991) Antibody-mediated clearance of alphavirus infection from neurons. Science 254:856–860

    Article  CAS  PubMed  Google Scholar 

  • Logue SF, Paylor R, Wehner JM (1997) Hippocampal lesions cause learning deficits in inbred mice in the Morris water maze and conditioned-fear task. Behav Neurosci 111:104–113

    Article  CAS  PubMed  Google Scholar 

  • Lustig S, Jackson AC, Hahn CS, Griffin DE, Strauss EG, Strauss JH (1988) Molecular basis of Sindbis virus neurovirulence in mice. J Virol 62:2329–2336

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maren S, Phan KL, Liberzon I (2013) The contextual brain: implications for fear conditioning, extinction and psychopathology. 1–12. doi: 10.1038/nrn3492

  • Marlatt MW, Potter MC, Lucassen PJ, van Praag H (2012) Running throughout middle-age improves memory function, hippocampal neurogenesis, and BDNF levels in female C57BL/6J mice. Devel Neurobio 72:943–952. doi:10.1002/dneu.22009

    Article  CAS  Google Scholar 

  • McArthur JC, Steiner J, Sacktor N, Nath A (2010) HIV-associated neurocognitive disorders: “mind the gap. Ann Neurol NA–NA. doi:10.1002/ana.22053

    Google Scholar 

  • Melnikova T, Savonenko A, Wang Q, Liang X, Hand T, Wu L, Kaufmann WE, Vehmas A, Andreasson KI (2006) Cycloxygenase-2 activity promotes cognitive deficits but not increased amyloid burden in a model of Alzheimer’s disease in a sex-dimorphic pattern. Neuroscience 141:1149–1162. doi:10.1016/j.neuroscience.2006.05.001

    Article  CAS  PubMed  Google Scholar 

  • Metcalf TU, Griffin DE (2011) Alphavirus-induced encephalomyelitis: antibody-secreting cells and viral clearance from the nervous system. J Virol 85:11490–11501. doi:10.1128/JVI. 05379-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Millichap JG (2008) Etiologic classification of attention-deficit/hyperactivity disorder. Pediatrics 121:e358–e365. doi:10.1542/peds. 2007-1332

    Article  PubMed  Google Scholar 

  • Nadler JV, Perry BW, Cotman CW (1978) Intraventricular kainic acid preferentially destroys hippocampal pyramidal cells. Nature 271:676–677

    Article  CAS  PubMed  Google Scholar 

  • Nargi-Aizenman JL, Havert MB, Zhang M, Irani DN, Rothstein JD, Griffin DE (2004) Glutamate receptor antagonists protect from virus-induced neural degeneration. Ann Neurol 55:541–549. doi:10.1002/ana.20033

    Article  CAS  PubMed  Google Scholar 

  • Newsholme EA, Crabtree B, Ardawi MS (1985) Glutamine metabolism in lymphocytes: its biochemical, physiological and clinical importance. Q J Exp Physiol 70:473–489

    Article  CAS  PubMed  Google Scholar 

  • Nozyce ML (2006) A behavioral and cognitive profile of clinically stable HIV-infected children. Pediatrics 117:763–770. doi:10.1542/peds. 2005-0451

    Article  PubMed  Google Scholar 

  • Okun E, Griffioen K, Barak B, Roberts NJ, Castro K, Pita MA, Cheng A, Mughal MR, Wan R, Ashery U, Mattson MP (2010) Toll-like receptor 3 inhibits memory retention and constrains adult hippocampal neurogenesis. Proc Natl Acad Sci U S A 107:15625–15630. doi:10.1073/pnas.1005807107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Olney JW, Fuller T, de Gubareff T (1979) Acute dendrotoxic changes in the hippocampus of kainate treated rats. Brain Res 176:91–100

    Article  CAS  PubMed  Google Scholar 

  • Phillips RG, LeDoux JE (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106:274–285

    Article  CAS  PubMed  Google Scholar 

  • Phillips RG, LeDoux JE (1994) Lesions of the dorsal hippocampal formation interfere with background but not foreground contextual fear conditioning. Learn Mem 1:34–44. doi:10.1101/lm.1.1.34

    CAS  PubMed  Google Scholar 

  • Potter MC, Yuan C, Ottenritter C, Mughal M, van Praag H (2010) Exercise is not beneficial and may accelerate symptom onset in a mouse model of Huntington’s disease. PLoS Curr 2:RRN1201. doi: 10.1371/currents.RRN1201

  • Potter MC, Figuera-Losada M, Rojas C, Slusher BS (2013) Targeting the glutamatergic system for the treatment of HIV-associated neurocognitive disorders. J Neuroimmune Pharmacol 8:594–607. doi:10.1007/s11481-013-9442-z

    Article  PubMed Central  PubMed  Google Scholar 

  • Provenzale JM, vanLandingham KE, Lewis DV, Mukundan S, White LE (2008) Extrahippocampal involvement in human herpesvirus 6 encephalitis depicted at MR imaging. Radiology 249:955–963

  • Rowell JFJ, Griffin DED (1999) The inflammatory response to nonfatal Sindbis virus infection of the nervous system is more severe in SJL than in BALB/c mice and is associated with low levels of IL-4 mRNA and high levels of IL-10-producing CD4+ T cells. J Immunol 162:1624–1632

    CAS  PubMed  Google Scholar 

  • Rudy JW (1993) Contextual conditioning and auditory cue conditioning dissociate during development. Behav Neurosci 107:887–891

    Article  CAS  PubMed  Google Scholar 

  • Sanders MJ, Wiltgen BJ, Fanselow MS (2003) The place of the hippocampus in fear conditioning. Eur J Pharmacol 463:217–223. doi:10.1016/S0014-2999(03)01283-4

    Article  CAS  PubMed  Google Scholar 

  • Shelton LM, Huysentruyt LC, Seyfried TN (2010) Glutamine targeting inhibits systemic metastasis in the VM-M3 murine tumor model. Int J Cancer 127:2478–2485. doi:10.1002/ijc.25431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shijie J, Takeuchi H, Yawata I, Harada Y, Sonobe Y, Doi Y, Liang J, Hua L, Yasuoka S, Zhou Y, Noda M, Kawanokuchi J, Mizuno T, Suzumura A (2009) Blockade of glutamate release from microglia attenuates experimental autoimmune encephalomyelitis in mice. Tohoku J Exp Med 217:87–92

    Article  CAS  PubMed  Google Scholar 

  • Silverman MA, Misasi J, Smole S, Feldman HA, Cohen AB, Santagata S, McManus M, Ahmed AA (2013) Eastern equine encephalitis in children, Massachusetts and New Hampshire, USA, 1970–2010. Emerg Infect Dis 19:194–201. doi:10.3201/eid1902.120039

    Article  PubMed Central  PubMed  Google Scholar 

  • Sklaroff RB, Casper ES, Magill GB, Young CW (1980) Phase I study of 6-diazo-5-oxo-L-norleucine (DON). Cancer Treat Rep 64:1247–1251

    CAS  PubMed  Google Scholar 

  • Souba WW (1993) Glutamine and cancer. Ann Surg 218:715–728

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Steele KE, Reed DS, Glass PJ, Hart MK, Ludwig GV, Pratt WD, Parker MD, Smith JF (2007) Alphavirus encephalitides. In: Dembek ZF (ed) Medical aspects of biological warfare. Office of the Surgeon General, US Army Medical Department Center and School, Borden Institute, Washington, pp 1–30

    Google Scholar 

  • Umpierre AD, Remigio GJ, Dahle EJ, Bradford K, Alex AB, Smith MD, West PJ, White HS, Wilcox KS (2014) Impaired cognitive ability and anxiety-like behavior following acute seizures in the Theiler’s virus model of temporal lobe epilepsy. Neurobiol Dis 64:98–106. doi:10.1016/j.nbd.2013.12.015

    Article  PubMed  Google Scholar 

  • van den Hurk AF, Ritchie SA, Mackenzie JS (2009) Ecology and geographical expansion of Japanese encephalitis virus. Annu Rev Entomol 54:17–35. doi:10.1146/annurev.ento.54.110807.090510

    Article  PubMed  Google Scholar 

  • Villari P, Spielman A, Komar N, McDowell M, Timperi RJ (1995) The economic burden imposed by a residual case of eastern encephalitis. Am J Trop Med Hyg 52:8–13

    CAS  PubMed  Google Scholar 

  • Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, McCormick LL, Fitzgerald P, Chi H, Munger J, Green DR (2011) The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35:871–882. doi:10.1016/j.immuni.2011.09.021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weaver SC, Reisen WK (2010) Present and future arboviral threats. Antiviral Res 85:328–345. doi:10.1016/j.antiviral.2009.10.008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weaver SC, Salas R, Rico-Hesse R, Ludwig GV, Oberste MS, Boshell J, Tesh RB (1996) Re-emergence of epidemic Venezuelan equine encephalomyelitis in South America. VEE Study Group Lancet 348:436–440

    CAS  Google Scholar 

  • Wiltgen BJ (2006) Context fear learning in the absence of the hippocampus. J Neurosci 26:5484–5491. doi:10.1523/JNEUROSCI. 2685-05.2006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The following grants were used to fund this research: NIH grants R01 NS038932 (DEG), R01 NS087539 (DEG), T32 8T32OD011089 (VKB), P30 MH075673 (BSS), and R03 DA032470 (BSS), as well as a pilot grant from the Brain Science Institute of Johns Hopkins University School of Medicine. The funding sources played no role in the conduct of the research, preparation of the paper, or decision to submit the article for publication. The authors would like to thank Joseph Mankowski, Kelly Metcalf Pate, Lisa Mangus, and Claire Lyons along with the Retrovirus group at Johns Hopkins University for the use of and assistance with their microscope and imaging software. We would additionally like to express our appreciation to Sivabalan Manivannan for his assistance in preparing the DON stock solution. The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Diane E. Griffin or Barbara S. Slusher.

Additional information

Michelle C. Potter and Victoria K. Baxter contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Gastrointestinal toxicity associated with high dose (0.6 mg/kg) DON treatment. Representative photomicrographs of hematoxylin & eosin-stained large intestine from (a) untreated, mock-infected and (b) high dose (0.6 mg/kg) DON, mock-infected mice at 7 DPI. High dose DON-treatment resulted in intestinal dilatation with loss of columnar epithelium and decreased cellularity (100× magnification; scale bar = 500 μm). (c) SINV-infected mice receiving high dose (0.6 mg/kg) DON regained body weight lost by 28 DPI (N = 3-4 mice per group) (JPEG 707 kb)

High resolution image (TIFF 433 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potter, M.C., Baxter, V.K., Mathey, R.W. et al. Neurological sequelae induced by alphavirus infection of the CNS are attenuated by treatment with the glutamine antagonist 6-diazo-5-oxo-l-norleucine. J. Neurovirol. 21, 159–173 (2015). https://doi.org/10.1007/s13365-015-0314-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-015-0314-6

Keywords

Navigation